UDC 004.92+519.674

A.I. Ivon, V.F. Istushkin, R.I. Lavrov THE COMPUTER DATA PROCESSING AT DETERMINING OF THE GRAIN'S RESISTIVITY IN VARISTOR MATERIALS

Abstract. Procedure of the data processing by means of Microsoft Office Excel program was developed for the oscillographic method of determining the grain's resistivity ρg in varistor materials. The templates for Microsoft Excel to compute ρg and the superheat temperature of varistor sample on a base of data obtained at scanning of the bitmaps of oscillograms were created.

Introduction. The electric resistivity of grains in varistor's ceramics ρ_g is an important parameter in determining the performance of varistors [1]. The oscilloscope method for determining of ρ_g , using exponential voltage pulse, was proposed in [2]. Since the method is based on the concept of differential resistance, its correct implementation requires high-precision determination of the voltage values from the oscillograms. Previously, it was shown [3] that at scanning of raster analog oscillograms by means of graphical editor Adobe Photoshop or specially developed for this purpose the program, one can ensure the accuracy of voltage determining with a relative error does not exceed $\pm 1,5\%$. When determining the electrical resistivity of the grains in varistor ceramics substantial amount of data obtained by scanning of oscillograms, time consuming to process them. Greatly simplify the processing of data and reduce the time allows the program to work with spreadsheets, Microsoft Office Excel.

Problem definition. The aim of this work is to develop a technique for processing data in Microsoft Excel at determining the grain resistivity in varistor ceramics and to create the templates for this technique.

Major part. The method proposed in [2], is based on the dependence of the differential resistance ρ_{dif} of varistor ceramics on the current density J, which is described by the expression:

$$\rho_{dif} = \rho_g + A^* J^1, \tag{1}$$

were A^* is th constant value.

According the equation (1) a linear relationship between the differential resistivity of the varistor ceramic ρ_{dif} , and the reciprocal current density \mathcal{J}^1 takes place. Therefore, if to build the dependence

[©] Ivon A.I., Istushkin V.F., Lavrov R.I., 2015

 $\rho_{dif} = f(\mathcal{J}^1)$ using a plot of current-voltage characteristics (CVC) and linearly extrapolating this dependence to the $\mathcal{J}^1 = 0$, we can find the resistivity of grain ρ_g .

To get a plot of current-voltage characteristics for sample of varistor at high currents, method uses a single voltage pulse of exponential form

$$U(t) = U_0 \exp(-t/\tau), \tag{2}$$

were U_0 – pulse amplitude, t – time, τ – time constant.

In Fig. 1 schematically shows the oscillograms of voltage and current, recorded by means of a two-beam storage oscilloscope. Current oscillogram was recorded as the voltage drop across a precision resistor ($R_T = 1$ Ohm) connected in series with the sample. Oscillograms in Fig. 1 represent in a parametric form the current-voltage characteristic of varistor sample where the time *t* is parameter. To determine of the grain resistivity it need to use the plots of oscillograms lying in the time interval

 $t_{min} \leq t \leq t_{max}$.

These plots are necessary for building of the dependence (1). Plots divided into equal intervals $\Delta t = t_2 - t_1$, corresponds to the time $t_i = (t_2 + t_1)/2$. For points of time t_i the values of current I_i and differential resistance R_{dif_2} can be found using the formulas:

$$I_i = (I_1 + I_2)/2, (3)$$

$$R_{dif} = (U_1 - U_2)/(I_1 - I_2).$$
(4)

Basing on the values of area *S* and the thickness *L* are known for a sample, the values R_{dif} and *Ii* lead to specific values ρ_{dif} and *J*, is plotted (1) and by linear extrapolation to the $J^1 = 0$ is determined the value of ρ_g .

The digital camera was used for creation of bitmaps of analog oscillograms. The thus obtained image files allow obtaining necessary information using the Adobe Photoshop program or by the special program to scan of raster images [3].

The scanning results are the coordinates of points on bitmap of oscillograms, which allow finding the voltage at these points using a scale voltage [3]. The error in this case not exceed $\pm 1,5\%$. The array of coordinate values in pixels is recorded at scanning of oscillograms (horizontal coordinate - time t_i , vertical - voltage U_i and current I_i). This array can be processed by means of Microsoft Excel for plotting the dependence $\rho_{dif} = dE/dJ = (dU/dI)(S/L)$ on the inverse current density

 \mathcal{J}^1 . In this case it is convenient to use the pre-built templates in Microsoft Excel. Example of such template is shown in Fig. 2.

9	the These				and the second second	and show in	errora "westigned	Contraction of the	VOTAT_44OV						
	and The	ess But 1	Встряка Фор	риат Серен	на Данные	Deno Cri	раека		-			tire	филя вспрос		6
12	133	13 2 3	N N N	10-3	19 - (* -)	見て・1	計劃者認	15 8 80							
id C	9T	× 1	- ж	КЧ IE	***	- 100 T	x 辺 (家 津川	B • & • 4	A* .						
13	λ. 10	8	C	D	F	F	G	н	1	1	ĸ	1	м	N	0
t1	~	11	U1	t2	12	U2	J A cm-2	1/J	dE/dJ OM CM	Rлин Ом	RCT OM	betta			-
1	1300	1186	195	1600	1389	272	63.7	0.016	2 978	10.4	99.6	9.6			
	1350	1225	206	1650	1414	283	57.8	0.017	3.220	11.3	108.4	9.6			
t	1400	1265	220	1700	1437	296	51.9	0.019	3.516	12.3	119.2	9.7			
	1450	1301	234	1750	1461	311	46.4	0.022	3.855	13,5	130,9	9.7			
t	1500	1331	247	1800	1479	324	42.0	0.024	4,191	14.7	142.8	9.7			
t	1550	1361	260	1850	1496	337	37.6	0.027	4,622	16.2	157.3	9.7	-		
	1600	1389	272	1900	1513	350	33.5	0.03	5,127	17.9	174.0	9,7			
	1650	1414	283	1950	1528	362	29,8	0,034	5,677	19,9	192,6	9,7			
	1700	1437	296	2000	1539	374	26.6	0.038	6,295	22.0	213.4	9.7			
T	1750	1461	311	2050	1550	387	23,4	0,043	7,062	24,7	240,9	9,7			
							Rct =	RT(Mu)	U1-U2)/(Mi(I2-	1))-1)					
							Rдин =(dE	/dJ)L/S	L - толщин	а образца:	S - площад	ь электр	одов		
							betta = Rc	betta = Rcт/Rдин							
							Rт - велич	₹т - величина сопротивления токового резистора (Rт = 1 Ом)							
							Для массштаба напряжения Для массштаба тока						a		
			2000 1229 пикселей		1700	1501	пикселе	эй							
							2000	423	пикселей		1700	288	пикселе	Ň	
							Масштаб	напряж	ения =	0,12407	В/пиксель				
								Масшт	аб тока =		0,004122	А/пиксе	ль		
								1632							
								1690							
								1632	Нуль тока =		1632	пикселе	Ň		
								1679	Нуль напряже	ения =	1685	пикселе	й		
								Масшт	аб времени =	0,02353 мкс/пиксе					
								1310	684						
								2160	684						
							Начало от	гсчета в	времени =	525	пикселей				
		Измерительный интервал времени = 17,6 мк							MKC						
							Время до	начала	измерительно	ого интерв	ала=	18	MKC		

Figure 2 – Template of Microsoft Excel for the processing of data obtained after scanning raster images of voltage and current oscillograms

Array of scanned data for inputing into the template is represented as a twodimensional array of 10 rows and 6 columns. Array of scanned data for input to template represents as a two-dimensional array of 10 rows and 6 columns. In Fig. 2 the columns of this matrix are denoted as t_1 , I_1 , U_1 , t_2 , I_2 , U_2 . The template columns J, 1/J, dE/dJ, R_{dyn} , R_{st} , betta use formulas to ensure calculation of J, 1/J, $\rho_{dif} = dE/dJ$, dynamic and static resistance $R_{dyn} = (U_1 - U_2)/(I_1 - I_2)$, $R_{st} = (U_1 + U_2)/(I_1 + I_2)$ and the nonlinearity coefficient of varistor betta = R_{st} / R_{dyn} . According the template columns 1/J, dE/dJ we can built the dependence (1) in Microsoft Excel. The option "Add trend line" is used for the construction of this dependence. It provides carrying out a straight line through the data points by the method of least squares. This line needs to perform linear extrapolation in determining the value of ρ_g . The window of Microsoft Excel after plotting the dependence (1) is shown in Fig. 3. If to select on a straight line two points with coordinates ρ_{1dif} , $1/J_1$ and ρ_{2dif} , $1/J_2$, one can perform the calculation of ρ_g by the formula:

$$\rho_g = \rho_{1dif} - 1/J_1 \cdot \frac{\rho_{1dif} - \rho_{2dif}}{1/J_1 - 1/J_2}.$$
(5)

This formula for the template shown in Fig. 3 is used in the cell, which is preceded by the words "Расчет удельного электрического сопротивления зерна". After substituting in the formula of the above coordinates, Microsoft Excel provides input the grain resistivity ρ_g into this cell of template.

In this paper the scanning of raster images of oscillograms for getting the original dataset was performed with a step 25 pixels along the time axis (interval 3 μ s). For calculation of differential resistance $\Delta U/\Delta I = (U_1 - U_2)/(I_1 - I_2)$ the points of voltage and current, spaced at an interval of 75 pixels along the time axis were used.

The pulse is used for measurement causes heating of the varistor's sample. The overheating temperature ΔT at any time t can be found from bitmaps of voltage and current oscillograms. Their scanning, from the time of the pulse with a given time step $\Delta t = t_i - t_{i+1}$ allows to obtain the arrays of voltage $U(t_i)$, $U(t_{i+1})$ and of current $I(t_i)$, $I(t_{i+1})$. These arrays allow us to calculate the overheating temperature of the sample, taking into account that for the duration of the short pulse (τ no more than 350 μ s), the heat do not dissipate, ie all power generated by electric current goes to heating the sample.

If the instantaneous current and voltage have the values I (t) and U (t), then for an infinitesimal time interval dt in the sample has dissipated the energy dW (t) = U (t) I (t) dt, which increases its temperature on

$$d \,\Delta T(t) = \frac{U(t)I(t)dt}{c_T d_m SL} \,, \tag{6}$$

were c_T u d_m are specific heat capacity and density of the varistor's ceramics.

If the equation (6) to integrate by time then one can be found the superheat temperature of the sample $\Delta T(t)$ at time moment *t*:

$$\Delta T(t) = \frac{1}{c_T d_m SL} \int_0^t U(t) I(t) dt .$$
(7)

Integral in the equation (7) is calculated by trapezium method using arrays of voltage $U(t_i)$, $U(t_{i+1})$ and of current $I(t_i)$, $I(t_{i+1})$. Estimated relationship for the superheat temperature ΔT at time t in this case has a view:

$$\Delta T(t) = \frac{1}{2c_T d_m SL} \sum_{i=1}^{N} (U(t_{i+1})I(t_{i+1}) + U(t_i)I(t_i))(t_{i+1} - t_i), \qquad (8)$$

were $N = t/\Delta t$, $\Delta t = t_{i+1} - t_i = const$.

For getting the arrays $U(t_i)$, $U(t_{i+1})$, $I(t_i)$, $I(t_{i+1})$, the scanning with a step 25 pixels was performed. Processing was carried out in Microsoft Excel using the menu option "sum" Σ for calculating the sum in expression (8).

Arrays of the scanning data in pixel for the time, current and voltage are inputed into the columns of template t_i , I_i and U_i . In the template columns t_i , P_i , dT_i apply formulas that by scale and array elements t_i , I_i and U_i calculate the instantaneous value of the time t_i , power $P_i = U(t_i)I(t_i)$ and the change of temperature $dT_i = (U(t_i)I(t_i) + U(t_{i+1})I(t_{i+1}-t_i)/(2c_T d_mSL)$.

To calculate the superheat temperature of the sample $\Delta T(t_{i+1})$ at time t_{i+1} the column of template dT_i subgroup is copied up a time t_{i+1} . To this subgroup is used menu option "sum" Σ . Performed the summation of the increments of temperature, which gives the desired value $\Delta T(t_{i+1})$. In Fig. 4 the maximum overheating temperature of varistor's sample in the measurement of ρ_g is obtained by summation of all values in a column dT_i . This temperature one can be seen after a line of text " Максимальная температура перегрева =".

If copying the different subgroups of values in the array dT_i and applying to them the option "sum" Σ , we can construct a time dependence of the overheating temperature begin from the time activity of the voltage pulse. In Fig. 5b such dependence is shown for varistor CH2-1.

As can be seen (Fig. 5b) the temperature ΔT changes most strongly in the interval of time close to begining of the pulse voltage (the reference time t = 0). Over time, the rate of ΔT change decreases and superheat temperature reaches a constant value corresponding to the maximum overheating temperature of varistor's sample under the influence of the voltage pulse.

DE N	loniant lisco	el - Seblon_1	max_superts	nat, 2nD, D12-1, 288K	435V										- 0 - 7
1	gain Dr	ares Bea	Встания	Формат Серенс	Jannese (ano Cope	exa						tim	цитя вспрос	6 ×
10	1 H B	161 4	プローム	12 (B+ (1) 11	- 0 - 18	, Σ • Al	71 I M	1 200%	8.80						
Aci	e Cyr		14 1 1	K # 4 E E	3 3 3 S	76 100 72	点 律	(年)田	a.A.						
-	F3	* .	=[E2+E3	11D3-D2)(2*0.078*0	,0223*5,6*0	.496)			1 1						
	A	8	C	0	E Di D-	F.	G	н	1	3	K	L	M	N	0
1	ti	11	UI	ti, c	PI, BT	ан, к									
2	775	1620	1690	0	0	0.010	6			-			-		
3	800	1111	205	5,9382E-07	679.7	0,042		-	Масшта	6 напр	яжения =	0,140252454	В/пиксель		
4	825	9/	209	1,18/6E-06	1960	0,163			Масшта	ю тока	-	0,00664452	А/пиксель	_	
4	850	115	214	1,7815E-06	1931	0,24			масшта	ID BPEN	иени =	2,34/41/84E-08	сликсель		
4	900	236	221	2,9691E-06	1//4	0,456		-	Для мас	сштара	времени				
7	950	370	229	4,1568E-06	1600	0,416			1320	699					
-	1000	485	234	5,3444E-06	1454	0,376		-	21/2	688					
3	1050	5/3	240	6,5321E-06	1339	0,344	-		0	12010-00	2260220022				
10	1100	707	240	7,7197E-06	1230	0,317			Окружа	ющая	төмпөрат;	/pa Q = 200 K			
11	1200	707	204	1.0005E.05	1000	0,280			Удельн	ан теп	C	5 – 0,480 Дж I-I N-			
12	1200	010	201	1,0095E-05	074.4	0,270			Топотно	CTB = D	0 F CM-3	79			
13	1200	040	2/1	1,1203E-05	9/4,4	0,252			Толщин	a oopa	ізца = 0,0	/ 0 CM			
14	1300	904	200	1,247 E-00	099,0	0,231	-		Площад	ць элек	тродов -	0,0223 CM2	P		
10	1400	1010	291	1,3000E-00	757.9	0.105			Папряж	ение з	аряда кое	денсатора = 450	D	120	
16	1450	1010	340	1,4040E-05	601.0	0,130			постоя	нная вр	земени за	споненциального	импульса -	130 MKC	
17	1600	1000	325	1,0033E-05	837.2	0,178	-								
10	1500	1139	320	1,72212-00	607 Z	0,104	-								
19	1800	1177	3.48	1.0409E-05	533.8	0,131									
24	1850	1019	360	2.0784E.05	488.0	0,130	-	-							
21	1700	1210	372	2 10715 05	444.4	0.114	-	-							
22	1750	1290	384	2,18712-05	309.7	0.103									
24	1800	1308	305	2 43475-05	386.4	0,103									-
04	1850	1333	405	2,45472-05	332.6	0.084									
24	1900	1359	416	2 8722E-05	300.1	0.078									
22	1950	1383	428	2 791E-05	270.5	0.07	-		-						-
20	2000	1406	438	2 9097E-05	242 1	0.063									
24	2050	1427	449	3 0285E-05	218.5	0.056									
30	2100	1446	461	3 1473E-05	193.4	0.05	-								
21	2150	1464	471	3 266E-05	172 1	0.045									
32	2200	1479	481	3 3848E-05	154.3	0.04									
T	Marcun	альная	темпер	atvpa nepero	ABA =	5.4	к								
21		Ser Ipringer	- annap	a the new of b											
	P H\/Be	r1/									14 1	*	Constant Press	17714	- 1
015		-	6 E			-	19						-1444 - 3, 1774		10.57
1			e l				5								12.01.0015

Figure 4 – Template for calculating of the superheat temperature of the varistor's

sample

Figure 5 – The bitmap image of oscillograms - a (1 - voltage, 2 - current) and built using it the dependence of superheat temperature from time for varistor CH2-1 -b. Scale: time -0.1163 μ s/pixel; voltage – 0.1395 *V*/pixel; current – 0.0034 *A*/pixel. Geometry of a sample: L = 0.78mm, S = 0.0231 cm². The time constant of the exponential pulse voltage $\tau = 340 \ \tau s$. Ambient temperature 297 K.

Conclusion. Create the templates for program Microsoft Office Excel, to simplify and expedite the processing of the data obtained by means of scanning the bitmap images of oscillograms of analog oscilloscopes. Templates are designed for use in oscillographic method of determining the specific electrical resistivity of grains in varistor materials. The possibility of determining superheat temperature of varistor's sample under the influence of voltage pulse by means of oscillograms was shown. The template of Microsoft Excel to calculate the superheat temperature was developed.

REFERENCES

Gupta T. K. Application of zinc oxide varistors [Text] / T. K. Gupta // J. 1. Am. Ceram. Soc., 1990. -V. 73(7). - P. 1817-1840.

2 Ivon A.I. High-current measurement of the grain resistivity in zinc oxide varistor ceramics [Text] / A.I. Ivon, R.I. Lavrov, A.B. Glot. // Ceram. Int., 2013. - V. 39. P. 6441-6447.

3. Ivon A.I. Application of bitmaps for increasing data processing accuracy in physical experiment [Text] / A.I. Ivon, Y.A. Ivon, R.I. Lavrov // System technologies: coll. articles. - Dnepropetrovsk, 2014. - Issue 1 (90). - P. 10 - 17.