
1 (96) 2015 “System technologies“

––––––––––––––––––

 Litvinov O.A., Gruzin D.L., 2015

ISSN 1562-9945

UDK 614.2+574/578+004.38

O.A. Litvinov, D.L. Gruzin

FEATURES OF AUTOMATING THE PROCESS OF DEVELOPMENT OF THE

FUNCTIONAL COMPONENTS OF INFORMATION SYSTEMS

Abstract. The article proposes the idea of the approach to the construction of

information systems, which simplifies the creation of functional components

responsible for the behavior of the system. Solution to the problem is based on

the application of the hierarchy of templates that allow you to describe and re-

use the experience of successful development. An important feature of the

proposed solution is the simplicity and accessibility of filling database templates

by ordinary user-programmer.

Keywords: automation of process, code generation, reuse.

Actuality of the topic. At the moment, the important practical problem of

software developers is the rapid creation of high-quality software. Quality implies that

the product will be comply with a number of characteristics (quality attributes), among

which should be noted: stability, testability (testability), utility (usability), availability,

scalability and openness. This imposes additional constraints on the development /

rules: the templates (eg., SOLID) and styles, documentation, research, usage of

multiple tools, different platforms and technologies.

In general, a modern information system can be described as a layered and

heterogeneous, i.e. consisting of a number of different modules (components,

subsystems), created using different tools and working on different platforms. The

construction of such systems usually require a lot of different professionals and well-

organized process that guarantees the quality of development [CMMI]. The most

important component of this process is to analyze and use the experience of previous

developments, including aspects of the planning, management, creation and

implementation of technical solutions. This allows you to identify the most effective

solutions those or other problems, optimize the process and minimize costs. An

important feature here is that for reuse of a component, it must be a formal description.

The quality of this description depends on the frequency of its use in a manual search

for a solution of the problem and the ability to automate its application.

In general, the process of developing an information system is reduced to the

transformation of the functional requirements of the user and the desired quality

1 (96) 2015 “System technologies“

ISSN 1562-9945

attributes of the system in a turnkey solution: a lot of software components that work

in the operating environment. Functional requirements represent a formalized

successful and unsuccessful (basic and alternative) scenarios of user interaction with

system (action-reaction). For simplicity of conversion and tracking requirements in the

solution (traceability) functional requirements are divided into levels of abstraction:

business, system, component. For simplicity of planning tasks from these scenarios are

pick out user stories, which include acceptance tests (user acceptance tests) and a

discussion on the implementation. Necessary conditions for the start of development

(formation number of tasks - backlog) should be considered as the presence of test

acceptance and system architecture, which is based on the attributes of quality. By the

term "architecture" is defined here as a set of standard solutions of typical tasks

dictated by a set of attributes of quality and specificity of the developed system. The

system architecture can also be represented at different levels of abstraction: from

high-level layers to the components required in these layers (Helper, Manager,

Strategy, Validator, Sender, Receiver, Processor, etc.). Formation the dependency

graph of tasks (eg., The development of the structure of tables, service, DAO and DTO

objects, UI components, and so on.) is the basis for development planning. Each task is

transformed into a set of unit tests used to estimate the performance of the contract by

developed components. A number of related components that implement the tasks

checked automatically or manually using the test acceptance, their breed.

The first task of automation of building solutions is to create a set of

components for a task, including the required components (interfaces, testing,

implementation, exceptions). If you solve this problem - the development will reach a

new level of quality, as much of the routine work to create components will assume a

code generator or DSL interpreter. It should be noted the well-known problem of

domain-specific languages: the effectiveness of the solution of typical problems and

the complexity and inefficiency of improvements, expanding by developer.

The second task � the transformation of formalized tests of acceptance to a set

of tasks, according to the chosen architecture: according to one of the branches of the

scenario, described in the language L, using previous experience, formalized in the

form of «LT», the system should offer dependency graph of tasks TDG, which will be

converted to full or partial set of components.

In both cases, an important issue is to teach the system to carry though such

transformation, with the facility should be accessible and convenient for the developer.

In this article we consider the variant of the decision for the first task.

1 (96) 2015 “System technologies“

ISSN 1562-9945

Analysis of recent publications. Consideration of issues generating a structural

component of the system is not interesting, for realization such tasks there is a wide

class of tools Visual Paradigm [1], Enterprise Architect [2], which are closely related

with universal modeling language UML [3]. The main issue of this article is the ability

and completeness of the generation of functional components that matches to modern

requirements. In the article [Gruzin 2014] was presented interpretation of the model-

based approach that simplifies the creation and maintenance of an information system,

which is based on the model, described using the frame approach of knowledge

representation. On the basis of the described model generates a number of

components, which greatly simplifies the process of developing multi-layer

applications, as well as the interpretation of the model is made during system

operation, that excludes the need to build and test excess classes. However, this

approach is suitable only for the class of deterministic document-oriented systems: the

rate on the interpretation of the results in a loss of flexibility, openness of the system is

lost, extensible markup requires further means of interpretation that is not available to

the end user-programmers.

Statement of the task. Searching of the flexible and easy-to-use tool to ensure

maximum efficiency in the building of high-quality software modules, involving a

minimum effort on the description of the task from the developer, as well as having the

opportunity of learning transformation script to executable code, is the aim of this

work.

The main part. In this article, we consider the aspects of automation building

functional components responsible for the implementation of tasks. In general, such a

component represents the next set: contract, implementation, unit tests (Fig. 1). The

contract includes three components: an interface exceptions and domain. Unit tests

testing the contract. Fig. 1 shows the relationship between the three components of the

contract and developed component, it is worth noting that all of these components

depend on the domain.

1 (96) 2015 “System technologies“

ISSN 1562-9945

Figure 1  The relationship between three components of the contract and developed

component:

i - interface, E - number of possible exceptions, ut - unit tests, c - the component, alt -

alternative scenario, base - base scenario.

An integral part of all approaches aimed at improving the quality of the

development process is the education and analysis of best practices after finish of the

stage or implementation of the product. Standard is processing code with detailed

commentary and subsequent documentation of successful solutions.

The proposed idea is based on the extension of this approach: creating templates

that describe the solution at different detail levels, which are aimed at automation of

obtaining new solutions based on formal experience. The detail level should be

sufficient to describe the minimum structural elements, which allows to describe the

function or even part of the function, followed the class, the resource associated with

the execution of tasks and is reflected in a set of classes, dictated by the architecture.

This pattern can be defined as a means of describing the display initial (domain-

oriented) description given in a language that includes target and number of semantic

markers that describe the transformation into a group of structures close to the

executable form (files, classes, projects, scripts creation and changes in the structure of

the database).

 ti : Di→ Ri ti ∈T , Di ⊆D , Ri ⊆R , (1)

where, t – mapping of structures of description in the language D to target shape R,

constructs are responsible for the implementation of a business function or part of it,

the shape of which is close to the real machine executable form (here the real machine

consider a number of components capable of providing the program described in the

language of the target constructs).

1 (96) 2015 “System technologies“

ISSN 1562-9945

To ensure the desired performance, and exclusion of loss of flexibility is

supposed to use a plurality of language levels for describing patterns-mapping,

wherein the results obtained after transformation by the higher level class can serve as

input data to display a lower level.

 τi : Δi→ D j Di, Dk ⊂Dj . (2)

Wherein

ti : Di→ Ri ,

 t k : Dk → Rk (3)

It is important to note that in terms of low-level architecture patterns are not

differentiated. It gives independent for developers in selecting an architecture, setting

new variants of the components.

Consider the example. The first mechanism in the hierarchy of templates is the

transformation at the primitive-functions level (see Eq. (1)). View of template shown

below, a marker of "$" marked non-terminal slots, ie, parts that can be replaced by the

input data.

AlternativeTestMethod

[[

 2/// <summary>

 /// An alternative story of .

 /// </summary>

 [Test]

 [ExpectedException(typeof($ex))]

 public void $m()

 {

 3try

 {

 4// Arrange

 // Act

 $txt;

 // Assert

 3}

 catch (ExceptionBase ex)

 {

 4string message = ex.GetMessage();

 Console.WriteLine(message);

1 (96) 2015 “System technologies“

ISSN 1562-9945

 throw;

 3}

 2}

]]

Listing 1  Template of function-class level

Task for the transformation with using this template described by next structure

<<AlternativeTestMethod(m: Something, ex: SomethingIsNotFound , txt:)>>,

bold marked the values of slots.

The result will be generated objective function (marked in Listing 3 by bold).

The transition to a higher level (level of files) aims to simplify the recording of

the composition of functions combined in a module file. For this serves to introduce an

additional level of templates describing the transformation in the some form

(according to the formula (2)).

atstm= <<AlternativeTestMethod(m: {0} , ex: {1} , txt: {2})>>;

Using of transformation - Domain-oriented description at level 2.

--DealerManagerTester2.cs->

tst:-UniTrader.DealerBox.Core.Contract DealerManager %We are going to make

something new.%;

atstm:-Something SomethingIsNotFound;

etst:-;

Listing 2  Description of task for transformation at the level of files

The result is the target file with name DealerManagerTester2, which cimtain

method Something, bold part was generated by using the transformation at the level 1.

namespace UniTrader.DealerBox.Core.Contract

{

 using NUnit.Framework;

 /// <summary>

 /// We are going to make something new.

 /// </summary>

 [TestFixture]

 public class DealerManager

 {

 /// <summary>

1 (96) 2015 “System technologies“

ISSN 1562-9945

 /// An alternative story of.

 /// </summary>

 [Test]

 [ExpectedException(typeof(SomethingIsNotFound))]

 public void Something()

 {

 try

 {

 }

 catch (ExceptionBase ex)

 {

 string message = ex.GetMessage();

 Console.WriteLine(message);

 throw;

 }

 }

 }

}

Listing 3  Result of the transformation

The next level is the level of resources. It seek for describe a component

responsible for implementing the contract (fig. 1).

!resource

resource DealerResolutionManager in UniTrader.Core.DealerBox Responsible for

order request resolution.

{

exception EmptyPositionIsNotAllowedException %Empty position is not allowed%

%Empty position is not allowed%;

exception UndefinedPositionTypeException %Undefined trade operation type

produces undefined command% %Position: [positionId] of account: [accountId] has invalid

tradeOperationId: [tradeOperationId]%;

exception PositionHasInvalidDataException %The data on position is invalid% %The

data on [positionId] of [accountId] has invalid parameters%;

ctor (IEngineManager engineManager, IDealerNegotiationManager

dealerNegotiationManager, ITransactionManager transactionManager);

1 (96) 2015 “System technologies“

ISSN 1562-9945

method Resolve (PositionBase position):void + throw

PositionHasInvalidDataException + throw EmptyPositionIsNotAllowedException + throw

UndefinedPositionTypeException;

}

!eresource

Listing 4  Description of task for creation resource

The result of the transformation will be a lot of descriptions of the form

domain-oriented description at level 2, which in turn will be converted into the desired

shape by appropriate means. As a result programmer receives three exceptions class

file, the file with interface, file with class and file with test of this class.

Classes of varying degrees of fullness: exceptions and interface - 100%, the

class includes methods of contract with code generation exceptions (implementation of

alternative stories), the constructor with initialization logic, the logic of the test is also

generated in part offering just a "stub" for direct and alternative scenarios of behavior.

Conclusion. The proposed approach greatly simplifies the reuse of assets,

which leads to an increase in the quality of development, focusing programmer’s effort

on the implementation of business functions, excluding the details of coding and

increasing productivity. Patterns at different levels allow to generate high-grade

functional components. The simplicity of template’s description allow to fill decision’s

base easily, from the fullness of which depends on the fullness of generating

components. The proposed approach is most effective in the case of a preliminary

detailed design of components, fullness database solutions, templates, and gives the

maximum effect in the implementation of model projects with a low level of research

of new technologies.

LITERATURE

1. Visual Paradigm http://www.visual-paradigm.com/.

2. Enterprise Architect http://www.sparxsystems.com.au/.

3. UML http://book.uml3.ru/sec_1_1.

4. CruiseControl http://cruisecontrol.sourceforge.net//

5. SCons http://www.scons.org/.

6. Configuration CruiseControl and SCons

http://www.ibm.com/developerworks/ru/library/au-nextgeneration_build/#resources.

http://www.visual-paradigm.com/
http://www.sparxsystems.com.au/
http://book.uml3.ru/sec_1_1
http://cruisecontrol.sourceforge.net//
http://www.scons.org/
http://www.ibm.com/developerworks/ru/library/au-nextgeneration_build/

1 (96) 2015 “System technologies“

ISSN 1562-9945

7. Mary Beth Chrissis. CMMI® for Development Guidelines for Process

Integration and Product Improvement, Addison-Wesley Professional; 3 edition (March

20, 2011). – 688 p.

8. Yii http://yiiframework.ru/doc/guide/ru/quickstart.what-is-yii.

9. FitNesse http://fitnesse.org/.

10. AV Podkopaev Means of describing the code generators for domain-

oriented solutions in metaCASEsredstve QReal. St. Petersburg. 2012. - 19 p.Runtime-

генератор https://msdn.microsoft.com/ru-ru/library/650ax5cx(v=vs.110).aspx.

11. SOLID http://x-twig.ru/blog/single-responsibility-principle/.

http://yiiframework.ru/doc/guide/ru/quickstart.what-is-yii/
http://fitnesse.org/
https://msdn.microsoft.com/ru-ru/library/650ax5cx(v=vs.110).aspx
http://x-twig.ru/blog/single-responsibility-principle/

