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Abstract. The comparative analysis of the statistical properties of 

realizations of chaotic and stochastic processes having different correlation 

structure: uncorrelated noise, autoregressive processes with short-term 

dependence and fractal processes with long-term memory. Depending on 

complexity measures of time series of process parameters were obtained. The 

time series corresponding to a variety of complex dynamical systems were 

investigated.   
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INTRODUCTION AND OBJECTIVE 

Mathematical models of complex systems exhibiting irregular dynamics are both 

random and deterministic chaotic processes. One of the objectives of time series 

analysis is to extract information from the series and infer the properties and 

mechanism of the process that generates the series. 

There are many approaches to the study of time series based on traditional 

statistical analysis, and the methods of nonlinear chaotic dynamics. Most methods of 

chaotic dynamics used for time series analysis, based on the reconstruction space of 

single realization using the procedure Packard-Takens [1,2]. The reconstruction of the 

pseudo-phase space allows us to compute the embedding dimension, which is the main 

means of distinguishing chaotic and random processes  [1-3]. This approach allows us 

to well distinguish between chaotic dynamics and uncorrelated random noise, 

however, it has no effect for the fractal random processes having long dependence. [4-

6].  

The characteristics of the complexity of the system behavior are entropy and 

recurrence measures [7]. The method of recurrence plots is based on the fundamental 

property of dissipative dynamical systems - recurrence states. This method of analysis, 

based on the representation of process properties in the form of geometric structures, is 

a means for detection the hidden dependencies in the observed processes [7-9]. 

Numerical analysis of recurrence plots allows us to calculate the measure of 
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complexity structures of recurrence plots, such as a measure of recurrence and 

determinism etc [9,10]. The characteristic of the complexity of the system behavior is 

entropy. Entropy and recurrence methods of time series analysis are based on the 

reconstruction space of single realization using the procedure Packard-Takens [4,7-9]. 

The purpose of this work is to conduct a comparative recurrence and entropy 

analysis of deterministic chaotic and random self-similar realizations to identify the 

mechanism, which generates researched series. 

 

RESEARCH METHODS 

 

Construction of pseudo-phase space [1,2]. The main idea of the application of 

nonlinear dynamics methods to the analysis of the realizations of a dynamical system 

is that the basic structure, which contains all the information about the system, namely, 

an attractor of a system, can be reconstructed by measuring only single component of 

this system Widely used procedure Packard-Takens allows to restore the phase 

trajectory of a dynamical system from single realization: 

( ) [ ( ), ( ),..., ( )],F t x t x t x t m         (1) 

where ( )F t – m - dimensional pseudo-phase space, ( )x t  – time realization,   – delay 

period.  

The construction of recurrence plot [7-10]. Recurrence plot is a projection of 

the m-dimensional pseudo-phase space onto the plane. Let point ix  corresponds to the 

phase trajectory ( )x t  describing the dynamic system in the m-dimensional space at a 

time t i , for i = 1, ..., N, then the recurrence plot RP is array of pixels, where a 

nonzero element of the coordinates ( , )i j  corresponding to the case where the distance 

between jx  and ix  is smaller  : 

, ( || ||), , , , 1,... ,     m
i j i j i JRP x x x x R i j N    (2) 

where   – size neighborhood of the point ix ; i jx x  – distance between points; ( )   

– Heaviside function. 

Analysis of the plot topology allows us to classify the observed processes: 

homogeneous processes with independent random values, processes with slowly 

varying parameters, periodic or oscillating processes corresponding to nonlinear 

systems, etc. Numerical analysis of recurrence plots allows us to calculate the measure 

of complexity structures of recurrence plots, such as a measure of recurrence and 
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determinism etc. The measure of recurrence RR  shows the density of recurrence 

points: ,2
,

1
 

N

i j
i j

RR RP
N

, where N – total number of points. 

Measure of determinism Det  is a characteristic of predictability process and 

equal to the ratio of the number of points in diagonal lines to the total number of 

recurrence points: 
min

,
,

( ) / ,


  
N N

i j
l l i j

Det P l RP where il  - length of the i -th diagonal line; 

 ( ) , 1,...,i lP l l i N   - frequency distribution of the diagonal lines lengths; lN - 

number of diagonal lines. 

The calculation of approximate entropy [4,7,11]. Aproximate entropy ApEn is 

the statistics of time series regularity that defines the possibility of its forecasting 

Consider a time series { }, 1,...,ix i N . Let the vector ( )mP i  is subsequence values 

1{ , ,..., }i i i mx x x   length of m. Two vectors ( )mP i  и ( )mP j  will be similar, if the following 

condition , 0i k j kx x k m     . For each  1,..., 1i N m    value ( )imC  is 

calculated 
( )

( )
1


 

 

i m

im

n
C

N m
, where ( )i mn   is number of vectors, that similar vector 

( )mP i .  

Approximate entropy ApEn determined by the formula 

1
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( )
m
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

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MODEL DATA 
 

Chaotic realizations [1,2]. Chaos is a complex dynamics of a deterministic 

systems in steady state. The main feature of such systems is sensitive dependence to 

arbitrarily small changes in initial conditions. If 0d is the initial distance between two 

points, then short time t later the distance between the trajectories, which start from 

these points, becomes  0( ) td t d e , where the value of λ is the Lyapunov exponent. 

This leads to the loss of deterministic predictability and the need to introduce 

probabilistic characteristics to describe the dynamics of chaotic systems. Iterated maps 

1 ( , )n nx f C x  , where С is control parameter, are the most simple and intuitive 

mathematical chaotic models.  



5 (52) 2007 “Системные технологии” 

  ISSN 1562-9945 70 

For a wide class of nonlinear functions f  the sequence  n n 0
x




 is chaotic 

Logistic map is the most famous example of chaotic maps:  

1 (1 )n n nx Ax x   ,      (4) 

where A  – control parameter, (0,4]A  and [0,1]nx .  

Realizations of an autoregressive process [3].  As processes with short-term 

dependence chosen autoregressive process of order 1:  

( ) ( 1) ( )X t X t t    ,     (5) 

where ( )t - uncorrelated white noise;  – autoregressive coefficient,  1  . 

Autoregressive coefficient value   characterizes the degree of the autocorrelation 

process.   

Stochastic self-similar realizations [3,12]. Stochastic process ( )X t  is self-

similar with self-similarity parameter H , if the process  Ha X at

 
is described by the 

same finite-dimensional distributions that ( )X t . One of the most famous and simple 

models of stochastic dynamics that have fractal properties, is the fractional Brownian 

motion (FBM). 

FBM with the parameter 0,5H   coincides with the classical Brownian motion. 

Parameter H  called the Hurst exponent, is the degree of self-similarity. Along with 

this property, the index H  characterizes the measure of long-term dependence of a 

stochastic process, i.e. that autocorrelation function ( )r k  decreases as a power law. 

RESULTS OF RESEARCH 

Carried out recurrent analysis detected strong differences in visual topology and 

the numerical characteristics of realizations of the above processes. We first consider 

the example of a completely different process on complexity: a periodic motion and 

uncorrelated white noise. It is obvious that the characteristics of chaotic and random 

processes must be located within the range of characteristic values calculated for the 

periodic and completely random trajectories. Table 1 shows the corresponding values 

of the measures of recurrence RR, determinism Det and approximate entropy ApEn. To 

construct the plot and calculate the characteristics in this case the length of realizations 

was chosen 1000N  .  

Table 1. Quantitative characteristics of complexity of sinusoid and uncorrelated noise 

 RR  Det  ApEn  

Sinusoid 0.18 0.998 0.03 

Uncorrelated noise 0.0003 0.025 1.7 
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Table 2 shows the mean of recurrence RR, determinism Det and approximate 

entropy ApEn corresponding to the realizations of map (4) for the control parameter 

A=3.7, 3.9, 4 (Lyapunov exponent is equal to  =0.37, 0.5, 0.69); autoregression 

realizations (5) when the values  =0.3, 0.6, 0.9; FBM realizations when the Hurst 

exponent Н=0.3, 0.6, 0.9. Greater value of Lyapunov exponent corresponds to a 

greater randomness of the system In each case, the values RR and Det, as a measure of 

regularity, decreases, and the entropy ApEn increases with randomness or 

uncorrelation. 

Table 2. Quantitative characteristics of complexity of realizations 

Logistic map Autoregression FBM 

А  RR Det ApEn  RR Det ApEn Н RR Det ApEn 

3.7 0.008 0.1 0.93 0.3 0.0003 0.03 1.72 0.3 0.02 0.55 0.47 

3.9 0.004 0.07 1.2 0.6 0.0005 0.05 1.65 0.6 0.02 0.87 0.21 
4 0.002 0.05 0.86 0.9 0.002 0.13 1.25 0.9 0.01 0.95 0.12 

 
In this work the time series corresponding to a variety of complex dynamical 

systems. In particular, the RR-intervals series were investigated. RR-interval is the 

time interval between adjacent teeth of electrocardiogram and it equals to the duration 

of the cardiac cycle. As an example of financial series, the dynamics of change in the 

index S&P500 for 2004-2008 was examined. Quantitative recurrence and entropy 

characteristics obtained from the time series are presented in Table 3. 

 

Table 3. Quantitative characteristics of complexity of time series 

 RR  Det  ApEn  

RR-

intervals  
0.18 0. 84 1,87 

S&P 500 0.06 0.91 2.1 

 

Based on the results of qualitative and quantitative analysis can be propose for 

modeling realizations RR-intervals to use deterministic chaotic systems, while the 

mathematical modeling of S&P500 series should be based on self-similar stochastic 

processes. For an correct choice of the model in the first case the estimation of such 

characteristics as the Lyapunov exponent, invariant measure distribution, etc. is 

necessary, and in the second case – the estimation of fractal characteristics. 

 

 

 



5 (52) 2007 “Системные технологии” 

  ISSN 1562-9945 72 

CONCLUSION 
The comparative analysis of the statistical properties of realizations of chaotic and 

stochastic processes having different correlation structure: uncorrelated noise, autoregressive 

processes with short-term dependence and fractal processes with long-term memory. The 

dependences of information complexity measures of time series, such as a measure of 

recurrence, a measure of determinism, entropy, scaling, etc., from the parameters of the 

processes: the bifurcation parameter, the Hurst exponent, autoregression coefficient. In this 

work the time series corresponding to complex dynamical systems: electrical biosignals and 

financial structures. Based on the results of the analysis mathematical model, taking into 

account the correlation and recursive structure of the time series were proposed. 
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