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APPLICATION OF EXPECTATION MAXIMIZATION
THEORY TO SOLVING THE PLOBLEM OF SEPARATION
THE MIXTURE OF GAUSSIANS

Abstract.The paper is directed to the study of computationally effective
algorithm of modeling and forecastingof optimization type. An analysis is given for
the method of Expectation Maximization (EM algorithm), its advantages and
disadvantages are considered. A derivation of the algorithm and its detailed
description are provided. Some recommendations are given regarding parameter
tuning for the algorithm developed. The work highlights a technique for separating
the Gaussian mixture using iterative algorithm based on the EM-theory. The results
of computing experiments for the EM-algorithm are presented using as example
Gaussian mixture separation for two random variables. The conclusions are made
regarding the possibilities of application the technique in different conditions.
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Introduction

An expectation maximization theory and respective algorithms (EM
algorithm) are used in mathematical statistics for computing of maxi-
mum likelihood estimates of probabilistic model parameters in cases
when the models depend on some non-measurable variables and incom-
plete data. The EM algorithm is functioning iteratively and each itera-
tion includes two basic operations. The expectation step (E-step) is used
for computing an expected value of a likelihood function using current
approximation for non-measurable variables. The maximization step (M-
step) is used for selected model parameter estimation that maximize the
likelihood computed at the previous step (i.e., at E-step).

The EM algorithm is often used for data clustering, machine learn-
ing and in computer vision systems. In the natural language processing
systems the Baum-Welch algorithm is often used which is a special case
of generalized EM algorithm. Thanks to the possibility of its function-
ing in conditions of data loss for some variables the EM algorithm also
became useful for portfolio risks estimation. Also this theory is used in
medical image recognition, especially in the positronemissiontomography
and the single-photonemissioncomputer tomography.

For the first time the iterative procedure like EM algorithm, that
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provided a possibility for numerical solution of the likelihood function

maximization in the problem of probabilistic distributions separation,
was proposed in the study [1]. Later on the idea was exploited in the
works [2, 3, 4, 5, 6, 7]. After that it was systematically studied in the
work [8]. The name of EM algorithm was proposed in the work [7], de-
voted to the application of the maximum likelihood approach to the sta-
tistical parameter estimation in conditions of incomplete data.

In the study [7] the concept of EM algorithm was proposed as a
technique for incomplete data processing. This concept is very handy
from methodological point of view and provides a good explanation for
an idea of the method. The concept itself has been accepted in further
analysis of the algorithm.

As a rule EM algorithms are hired for finding solutions of the prob-
lems of two types. To the first type belong statistical problems that are
directed towards analysis of incomplete data, i.e. when some statistical
data cannot be accessed due to quite definite reasons. Another type of
problems create statistical problems that are related to such likelihood
functions that do not allow an application of handy analytical research
techniques but allow serious simplifications if we can add to the problem
additional “non-measurable” (unobserved, hidden, latent) values. Some
examples of the second type problems create the problems of image rec-
ognition and picture reconstruction. A mathematical core of these ap-
plied problems create cluster analysis techniques, classification tasks
and the problems of probabilistic mixtures.

The method of sliding separation of the mixtures is at the basis of
the proposed lately approach to the study of stochastic structure of cha-
otic informational streams in complex telecommunication nets [1, 2].
This approach is based on the stochastic model of the telecommunication
net in the frames of which it is represented in the form of superposition
of some simple series and parallel structures. The principle of maximum
entropy in combination with the limit theorems from probability theory
are naturally leading to the state that the model generates the mixtures
of the gamma type distributions for a parameter that reflects the execu-
tion time (processing time) of a request from the net. The parameters of
the mixture of gamma distributions generated characterize the stochas-
tic structure of informational streams in the net. To solve the problem
of statistical parameter estimation for the mixtures of exponential and
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gamma distributions (in the problem of mixture separation) the EM al-

gorithm modification is used.

To study the changes of stochastic structure of informational
streams in time the EM algorithm is used in the mode of sliding win-
dow. It is very important in the frames of this approach to select an ap-
propriate version of the EM algorithm that provides high execution rate
and handy interpreting of the results achieved. This study considers in
detail some properties of the EM algorithm and its frequently used
modifications and a new approach is proposed directed towards en-
hancement of precision and stability of the EM algorithm and improve-
ment of interpreting of its functioning results when solving the problem
of mixture separation.

The main focus is made here to application of the EM algorithm to
the problem of separation of normal mixtures. The problems of studying
of such mixtures comprise a kernel for the method of volatility decom-
position for financial indexes [3, 4] and turbulent plasma study [5].

In the probability theory the mixture of random variables is defined
as a probabilistic distribution of random variable the values of which
can be extracted from one of the subordinated probabilistic distribu-
tions.

The mixtures of distributions allow to represent complex distribu-
tions in the form of simpler ones, and they are used thanks to the fact
that they describe well a large number of data samples from real life
problems, and thanks to the easy processing of the mixture components.

Consider a set of points in the plain presented in Fig. 1. For sim-
plicity of representation the points are shown in the plain though the
theory given below is consistent with the sets of points of any finite di-
mensionality.

The points in the picture seem to be grouped in clusters. One clus-
ter to the right is noticeably separated from the others. Two more clus-
ters to the left are disposed close to each other and it is not quite clear
if it is possible to correctly put a separating line between them.

The problem statement for separating a mixture of distributions

The problem of distribution mixture separation could be defined as
follows. Consider a set of N points in D-dimensional space,
X1,X2, .., Xy, and the family F of probabilistic densities in the space

; it is necessary to find a probabilistic density f(x) e F such, that
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the probability of generating the set of points,x,, x,, ..., x,, from this

density will be maximum. One of the often used approaches to defining
a family of distributions is in providing all of its members with the
same mathematical form, and to distinguish them with different values
of parameters 6.

Figure 1 —300 points on the plain

Parametric model
In the following we will be considering the functions, f(x, that

represent the mixtures of normal distributions:

K
F(.8) = ) peglemea),
k=1
where

1 _g(llﬂr-'—m;«.-ll)2
XMy 03, ) = ——e ' %k
g( k k) (mo_k)p

is a density of distribution for normal D —dimensional isotopic
Gaussian random value; 6 =(0,,0,,...,0¢) = ((pr.my, 01), ..., (P, M) is
K(D-dimensional vector that includes the probabilities of mixing
P> mathematical expectations m,, and standard deviations o,, that be-

long to the K Gaussian distributions.
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The density of each distribution, integrated over the space R”,
gives a unity:

f Dg(x;'mkak)dx = 1;
R

Here is a density function of probabilistic distribution, that is

why should also integrate to unity:

fRD f(x,ﬂ)dx = fRDE;
fRD YicapegComeoy) dx = X i fRn;

Yok g

Thus, sum of the numbers , is a unity. It should also be noticed

that the numbers are nonnegative (because the function is

nonnegative). This fact explains why the numbers p, are called the

probabilities of mixing.
The generative model

The Gaussian mixtures have been studied well enough in direction
of modeling the cluster points: each cluster is assigned to Gaussian with
mathematical expectation somewhere in the middle of a cluster, and
standard deviation that in some manner describes divergence of a clus-
ter points.

Another view on this modeling problem is that the points in Fig. 1
could be generated through repetitive execution of the two-step proce-

dure given below N times, with one run for each point, x,:

1. Generate a random value from the set {1,2,..,K} in a way
that the probability of getting k-th value is p,. This provides a
possibility to select a Gaussian from which will be generated the point
Xpe

2. Generate random vector x, from the £k-th Gaussian

distribution that is defined by the function g(x;m; o).
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Due to the fact that the defined above family of Gaussian mixtures
is parametric, the problem of density estimation could be defined more

exactly as a problem of finding the parameter vector 6 such, that the

mixture function f(x,0) is generating the set of points x, with maxi-

mum probability.
It is still necessary to establish what means “with maximum prob-
ability”. That is, it is necessary to find the function L(, that meas-

ures the likelihood of some definite model with condition that the set of
random values is available.
Maximum likelihood approach
Now apply the method of maximum likelihood. The probability of
getting the point (value) in a small volume of dx near the point x is

equal to the value of f(x,0)dx. If the points x, are generated inde-

pendently, the probability of getting N points will be defined by the ex-
pression: f(xy,8)dx... f(xy,. The volume dx is a constant, so it can

be ignored in the process of maximizing the probability. Thus, the like-
lihood function can be written as follows:

The parameter estimation problem is formulated in the following
way:

6 = argmax L(X;8).

Determining the probabilities

To continue the problem solving it is useful to introduce the fol-
lowing function:

This expression is needed for determining the mixture density. It
was assumed in the definition of the likelihood function, L(X;0), that

generating of the k-th component from generating model is independent

on generation of the value x, from definite component. It follows from
this fact that g(k,n)dx is full probability of generating the component
k; and the value of x, is generated by making use of this component.

The problem solution
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As it is shown in [6], the problem under consideration has the fol-
lowing solution:

; (1)
¢ (2)

(3)

The first two expressions we can understand on intuitive level as
far as and are sample mean and standard deviation, respectively.

They are weighted with conditional probabilities that the points (values)
were received with the model k. The third equation for mixing the prob-
abilities is not so obvious though not complicated for understanding as

far as p, could be found as a sample mean for conditional probabilities,

p(k|n).

An iterative procedure construction

The equations (1) — (3) are closely connected with each other due to
the fact that conditions p(k|n) in the right hand side depend on all

variables in the left hand side of other equations. Because of this reason
the system (1) — (3) cannot be solved directly. However, the EM algo-
rithm provides a possibility to construct an iterative procedure for solv-
ing the problem.

The algorithm implementation

To perform the computational experiments the EM algorithm was
implemented on the basis of equations (1) — (3). As an estimate for clus-
tering quality the following quadratic criterion was hired:

Eps = %E§=l(-mk - ‘m;)

Consider the quality of separation of two Gaussians with unity
standard deviation, o, =0, and with mathematical expectations,

m, = —m,the sample size was selected at 1000000.
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Table 1
Results of EM algorithm application to mixture separation

Ne a Eps

1 1024 1.36e-6
2 256 3.99e-6
3 64 5.09e-6
4 16 6.82e-7
5 4 1.80e-6
6 1 4.04e-6
7 0.25 6.21e-5

Asitcanbeseenfromthetable 1, thequalityoftheEMalgorithmapplica-
tion for separating the mixtures of random variables remains quite ac-
ceptable even in the case when the distance between mathematical expec-
tations is less than standard deviation. Now consider in some detail the
values of ¢ that are less than 4.

Table 2

EM algorithm application in cases when a <4

Ne a Eps

1 4 1.37e-6

2 2 1.13e-5

3 1 1.39e-5

4 S 1.13e-4

5 j 1.34e-3

6 1/8 3.66e-3

7 1/16 3.15e-3

The computational results, given in table 2, show that the algo-
rithm used is performing worse when the distance between mathematical
expectations of the distributions selected is less than three standard de-
viations what is easily explained by the three sigma rule. However, even
in these cases the quality criterion is changing slowly and the conver-
gence time of the algorithm is growing exponentially.

Conclusions

The paper provides a theoretical analysis of the target sphere of

application of the EM theory. The formal problem statement was per-
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formed and the method of its solving was considered in necessary detail.
The ideas behind the EM theory are presented and a theoretical substan-
tiation for the EM algorithm is given, including the problem of its con-
vergence.

The notion of random variables mixture was introduced and the
problem of the mixture separating was formulated. The parametric
model for the problem is presented. Also an equivalent generative model
is given that was used for constructing the algorithm for generating the
Gaussian mixture of appropriate dimensionality. An iterative procedure
for solving the problem of Gaussian separation was presented on the ba-
sis of EM theory.

The computational experiments performed showed that the EM al-
gorithm was functioning a little worse when the distance between the
mathematical expectations of the distributions used was less than three
standard deviations what is explained easily by the three sigma rule. At
the same time the quality of the distributions separation remained at ac-
ceptable level.

In the future research it is necessary to study the possibilities for
effective implementation of the EM algorithm based on modern distrib-
uted and multiprocessor computer systems.
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