УДК 681.5.09

М.А. Алексеев, Е.И. Сироткина

ДИАГНОСТИКА И ОТКАЗОУСТОЙЧИВОСТЬ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ ПРОМЫШЛЕННЫХ SCADA CUCTEM ОТВЕТСТВЕННОГО НАЗНАЧЕНИЯ

Аннотация. Рассматривается математическая модель работы подсистемы самодиагностики и автовосстановления сервера БД в составе сервера промышленной SCADA системы на примере графа состояний ПДВС. Диагностика работы сервера SCADA системы проводится с учетом текущей производительности сервера БД на основе мониторинга его характеристик для ресурсоемких запросов. Предлагается методика автоматического резервирования и автовосстановления сервера SCADA системы после необратимого отказа.

Ключевые слова: диагностика, отказоустойчивость, SCADA система, резервирование, автоматическое восстановление, граф состояний.

Постановка проблемы. Надежность работы SCADA системы ответственного назначения как аппаратно-программного комплекса — это свойство сохранения способности выполнять требуемые функции круглосуточно в режиме реального времени на протяжение всего периода эксплуатации.

Оценка надежности работы SCADA системы является интегральной величиной и зависит от многих факторов:

- оптимального выбора оборудования системообразующих узлов SCADA системы, сетевых коммуникаций, приемо-передающей аппаратуры, первичных преобразователей и т.д.;
- оптимального выбора программного обеспечения (ПО) SCADA системы, которое включает в себя базовое ПО для каждой из подсистем SCADA системы, в зависимости от выполняемых ими основных задач. К базовому ПО относятся операционная система, среда проектирования и разработки ПО, включая стандартные библиотеки функций, классов и компонентов данной среды разработки, сетевые службы, серверы баз данных (БД) и т.д.;

56 ISSN 1562-9945

[©] Алексеев М.А., Сироткина Е.И., 2012

- технологии и методов организации работы коллектива системных интеграторов на протяжение всего жизненного цикла ПО и всей системы в целом.

Особого внимания при оценке надежности работы системы требует автоматическая диагностика работы исполняемых модулей ПО в режиме реального времени в процессе эксплуатации SCADA системы.

Анализ публикаций по теме исследований

Были рассмотрены методы повышения надежности и отказоустойчивости ПО промышленных SCADA систем на примере выполнения в автоматическом режиме диагностики, резервирования и восстановления БД в составе промышленной SCADA системы ответственного назначения, где одним из важных элементов системного ПО сервера промышленной SCADA системы является система управления базой данных (СУБД).

СУБД в составе сервера промышленной SCADA системы характеризуется интенсивным потоком данных и большими объемами обрабатываемых выборок данных. Системные отказы промышленного сервера могут приводить к значительным для всей SCADA системы последствиям, вплоть до разрушения БД и необратимого отказа [1] всей системы. Таким образом, надежность и отказоустойчивость таких СУБД напрямую зависит от организации сервисов диагностики, резервирования и восстановления баз данных. Обычно функции диагностики, резервирования и восстановления БД выполняются системным администратором БД в интерактивном режиме. При этом, как правило, работа некоторых подсистем промышленной SCADA системы, взаимодействующих с БД, приостанавливается, что в свою очередь ведет к потере актуальных данных и отсутствию полнофункционального диспетчерского мониторинга и управления. Для промышленных SCADA систем ответственного назначения такие служебные остановы сервера могут быть критичны.

Формулировка цели статьи

Целью работы является разработка методики автоматической диагностики, авторезервирования и автовосстановления сервера SCADA системы после необратимого отказа, приведшего к разрушению БД.

Параллельно с основной работой СУБД проводится автоматическая диагностика ее работы и автоматическое резервирование БД.

Одним из ранних методов обнаружения отклонений в работе СУБД является диагностика СУБД на основе мониторинга производительности сервера БД.

Приведем пример. Как известно [2, 3, 4], сервер БД параллельно с ведением самой БД формирует журнал транзакций. интенсивном потоке данных, автоматически добавляемых в БД, что характерно для промышленных SCADA систем, быстро увеличивается При размер журнала транзакций. этом возникает обратнопропорциональная зависимость между размером журнала транзакций и скоростью выполнения этих транзакций сервером БД, что в свою очередь тормозит запись потока данных в режиме реального времени и может приводить к значительному снижению производительности сервера SCADA системы.

Основная часть

Рассмотрим математическую модель работы подсистемы самодиагностики и автовосстановления сервера БД (ПДВС) в составе сервера промышленной SCADA системы на примере графа состояний ПДВС.

Определим состояния полного (full backup) и инкрементного (incremental backup) резервирования БД. Известно [2], что при инкрементном резервировании, в отличие от полного резервного копирования, последовательно создаются копии журналов транзакций, в которых прописаны изменения в БД с момента создания последней полной копии БД.

При отказе сервера БД, восстановление происходит путем выполнения команд, запротоколированных в резервируемых файлах журналов транзакций, причем необходимо последовательно, строго по дате и времени обрабатывать все инкрементные резервные копии. При полном резервировании происходит резервирование самого файла БД. Каждый из этих видов резервирования БД имеет свои преимущества и недостатки. Т.к. резервирование БД происходит в фоновом режиме параллельно с транзакциями, то инкрементное резервирование является более ресурсосберегающим процессом, чем полное резервирование. Однако, при необходимости восстановления сервера БД после необратимого отказа, более ресурсосберегающим процессом является восстановление из состояния полного резервирования.

На рисунке 1 приведен граф состояний ПДВС.

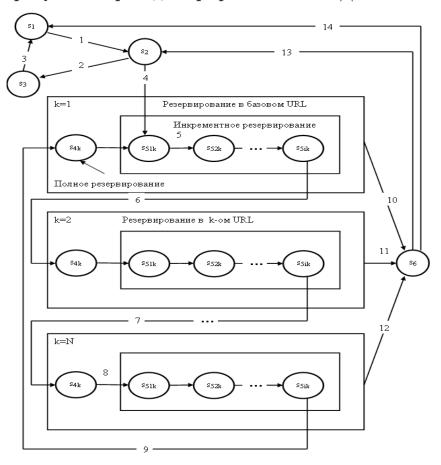


Рисунок 1 - Граф состояний ПДВС

Описание некоторых состояний графа приведено в таблице 1.

Таблица 1

Состояния графа ПДВС

$N_{0} \pi/\pi$	Состояние	Описание			
1	s1	СУБД отсутствует			
2	s2	работоспособное состояние сервера БД, резер-			
		вирования нет			
3	s3	отказ сервера БД, резервирования нет			
4	s4k	работоспособное состояние сервера БД после			
		полного резервирования БД для k-го URL			
5	s5ik	работоспособное состояние сервера БД после і-			
		го инкрементного резервирования для k-го			
		URL			
6	s6	отказ сервера БД, резервирование есть			

Переходы графа ПДВС характеризуют соответственно создание БД, отказ сервера БД. инкрементное и полное резервирование в базо-

4 (81) 2012 «Системные технологии»

вом и k-ом URL, успешное и неудачное автоматическое восстановление сервера БД после отказа. Резервирование происходит по методу заполнения кольцевого буфера.

 ${\rm K}$ основным параметрам математической модели $\Pi {\rm ДBC}$ относятся:

- размер БД на момент времени t Sd(t), байт;
- размер журнала транзакций на момент времени t-Sl(t), байт;
 - изменение размера БД за период времени $\Delta t \Delta Sd(\Delta t)$, байт;
- изменение журнала транзакций за период времени Δt $\Delta Sl(\Delta t)$, байт;
- размер полной резервной копии на момент времени t-Sbf(t), байт;
- размер единичной инкрементной резервной копии на момент времени t Sbi(t), байт;
- длительность полного резервирования для k-ого URL Tbf_k , сек;
- длительность і-го единичного инкрементного резервирования для k-ого URL $-Tbi_{ki}$, сек;
 - количество инкрементных резервных копий в k-ом URL m_k ;
- количество URL для резервирования и восстановления БД N;
- период времени между созданием двух соседних резервных копий в k-ом URL $-tb_k$, сек;
- период времени на восстановление СУБД после отказа в k- ом URL $-\pi$, сек;
- период времени на восстановление СУБД после отказа с использованием полного резервирования в k-ом URL $\pi r f_k$, сек;
- период времени на восстановление СУБД после отказа с использованием инкрементного резервирования в k-ом URL πi_k , сек;
- дата и время обнаружения отказа сервера БД Tfl (fault location time);
- время реакции сервера на запись блока данных в БД trsw (server response time on write);
- время реакции сервера на выборку данных из БД trsr (server response time on read).

ISSN 1562-9945

Временная диаграмма резервирования и восстановления БД приведена на рисунке 2.

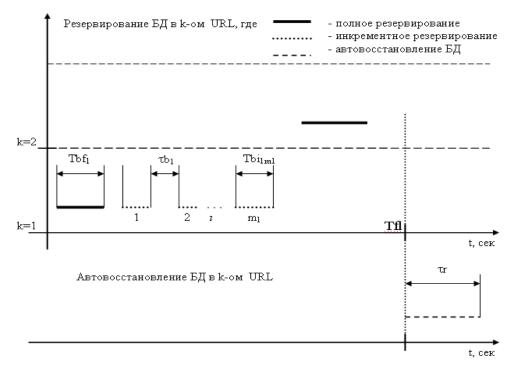


Рисунок 2 - Временная диаграмма резервирования и автовосстановления БД

По интенсивности потока записываемых данных для промышленной SCADA системы ответственного назначения и принятому регламенту сохранения актуальных данных в БД рассчитывается и экспериментально проверяется скорость изменения размера БД

$$vd(t) = \frac{\partial Sd}{\partial t} \tag{1}$$

и скорость изменения размера журнала транзакций

$$vl(t) = \frac{\partial Sl}{\partial t} \tag{2}$$

Определяем время реакции сервера БД на запись и выборку наборов данных различной длины L, в зависимости от начальных размеров БД и журнала транзакций, а также скорости их изменения.

$$t_{rsw} = f(L, Sd_0, Sl_0, vd, vl)$$
(3)

Определяем максимальные значения Sd_{max} , Sl_{max} , vd_{max} , vl_{max} для выборки длины L, не приводящие к значительному отклонению времени реакции сервера БД

$$\Delta t_{rsw} \le \xi$$
 (4)

Определяем зависимость времени автоматического восстановления БД после отказа, как

$$\tau_{rf} = \phi_1(Sbf_k) \tag{5}$$

$$\tau_{ri} = \varphi_2(\sum_{i=1}^{m_k} Sbi_{ki}, \tau b_1) \tag{6}$$

Для задаваемых пределов значений Sd, Sl, vd, vl, L, t_{rsw} , τ_{rf} , t_{ri} необходимо найти такие t_{l} , t_{l} , t_{l} , которые позволили бы максимально экономить время и машинные ресурсы сервера SCADA системы как на резервирование, так и на восстановление БД при минимальных потерях данных во время отказа системы и заданном объеме свободного дискового пространства для резервирования и восстановления СУБД в t_{l} -ом URL.

На сегодняшний день существует много различных инструментальных средств мониторинга производительности SQL серверов. В качестве примера приведем результат использования MS SQL Server Activity Monitor. Данное ПО выводит информацию о ресурсах, находящихся в состоянии ожидания (см. рисунок 3), время отклика и исполнения файловых операций ввода/вывода данных (см. рисунок 4), характеристики по производительности машинных ресурсов при исполнении последних ресурсоемких запросов (см. рисунок 5).

Resource Waits						
Wait Category 🔳	Wait Time [ms/sec] 🔳	Recent Wait Time 💌	Average Waiter Count 🗈	Cumulative Wait Time [sec]		
Buffer I/O	1267	2307	1.9	35480		
Latch	185	144	0.4	154		
Logging	28	35	0.0	789		
Network I/O	11	9	0.0	3658		
Other	0	0	0.0	6		
Memory	0	0	0.0	0		
Lock	0	0	0.0	297		
Buffer Latch	0	0	0.0	8		
Compilation	0	0	0.0	0		
Backup	0	0	0.0	38451		

Рисунок 3 - Панель ресурсов ожидания

Data File I/O							
Database 🔳	File Name	MB/sec Read 🖭	MB/sec Writen	Response Time [ms] 🔳			
msdb	C:\ProgramFiles\Microsoft SQL	0.0	0.0	154			
tempdb	C:\ProgramFiles\Microsoft SQL	73.9	0.0	122			
energydb	C:\ProgramFiles\Microsoft SQL	0.0	18.4	106			

Рисунок 4 - Панель файловых операций ввода/вывода данных

Recent Expensive Queries							
Query 💌	Executions/min 💌	CPU (ms/sec) 🔳	Physical Reads/sec 🗷	Logical Writes/sec 🛎	LogicalReads/sec 🔳	Average Duration (ms) 🔳	
SELECT	12 044	15	0	3	1260	1	
SELECT	5680	13	0	0	479	0	
SELECT	1496	5	0	0	255	0	

Рисунок 5 - Панель последнего ресурсоемкого запроса

Выводы и перспективы дальнейших исследований

Использование аналитических, численных и экспериментальных методов моделирования работы промышленного сервера SCADA системы, диагностика его работоспособности и производительности во время и после резервирования БД показали, что автоматическое восстановление БД после необратимого отказа, приводящего к разрушению БД, возможно не менее чем в 80% случаев таких отказов. При этом, применение автовосстановления после отказа в сотни разсокращает время восстановления работоспособности системы без влияния человеческого фактора. В качестве перспективных исследований может быть рекомендована разработка методики полного автоматического восстановления работоспособности системообразующего узла SCADA системы ответственного назначения.

ЛИТЕРАТУРА

- 1. Военный энциклопедический словарь ракетных войск стратегического назначения / [Военная академия РВСН имени Петра Великого]. М.: Научн. изд-во «Большая Российская энциклопедия», 1999. 634 с., ISBN 5-85270-315-X
- 2. Sybase SQL Anywhere. A System 11 Server Product. User's Guide. Sybase Inc., 1995. 1165p., ISBN 1-55094-110-0
- 3. Брайан Хичкок. Sybase. Настольная книга администратора./ Хичкок Б. М.: Издательство «Лори», 2000. 420с.
- 4. К. Дейт. Введение в системы баз данных, 6-е издание:Пер.с. англ./Дейт К.К.,М.,СПб.:Издательский дом «Вильямс»,2000. -848с.
- 5. Канер Сэм. Тестирование программного обеспечения. Пер. с англ./ Канер С., Фолк Д., Нгуен Е. — К.: Издательство «ДиаСофт», 2000. — 544с.
- 6. SCADA системы: взгляд изнутри / Андреев Е.Б., Куцевич Н.А., Синенко О.В. М.: Издательство «РТСофт», 2004. 176с.
- 7. Ricky W. Butler. A Primer on Architectural Level Fault Tolerance. / Butler R. National Aeronautics and Space Administration. Langley Research Center, Hampton, Virginia. 23681-2199. 2008. 53p.
- 8. Гнеденко Б.В. Математические методы в теории надежности. (Серия: «Физико-математическая библиотека инженера»). / Гнеденко Б.В., Беляев Ю.К., Соловьев А.Д. М.: Наука, Главная редакция физико-математической литературы, 1965. 524 с.