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Introduction 

In the last years, the problem of the flight control system robust-

ness became a challenge for designers. Several methods have been pro-

posed in the area [1]. In the present paper the combination of the fuzzy 

inference system and the traditional control is investigated in order to 

achieve the aforementioned objective. The complexity of the task 

brought us to divide the design procedure into two stages. At the first 

stage the inner loop controller is designed based on the crisp controller, 

the second stage is devoted to the design of the outer loop controller 

based on the fuzzy system. In the design of flight control law one should 

care about many problems, especially in the area of unmanned aerial ve-

hicles (UAV), due to the expensive cost of the on-board computers and 

navigation sensors as well as to the weight, cost and power consumption 

of the UAV, which should be reduced to the minimum. For these reasons 

the control law should be simple enough and should respond to the ex-

pected performances and robustness requirements of the flight control. 

In order to reduce the navigation sensors and the weight and cost of the 

UAV, in this paper, the optimal controller is designed for the inner loop 

based on the separation theorem [9]. The state estimator is used to re-

store the unavailable measurements which could be contaminated by 

noises, in the next step a state feedback control law is designed for the 

filtered states based on the linear quadratic regulation. 

However, during the flight, the UAV is vulnerable towards the 

changeable of atmospheric conditions and parameters of the plant model. 

Hence, the designed control law may not keep the predefined objectives 

of robustness and performances. The ∞HH2  - robust optimization is 

used to seek the trade off between the performances and robustness of 

the inner loop controller [7, 8]. 

In the second stage the fuzzy system is used to design the outer 

loop control law. The fuzzy controller used in this report is inspired 

from the well known conventional adaptive controller called model ref-
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erence adaptive controller (MRAC) [12]. Such controllers have the learn-

ing ability from a reference model which approximates the dynamic of 

flight. The fuzzy controller is used to hold the altitude of the UAV [1]. 

The design of fuzzy controller is based on ad-hoc method and on the ex-

pert's knowledge, by this fact the rule base of the controller may not be 

consistent and/or the expert could omit some uncertainties which can 

occur during the flight. For this reason, the fuzzy controller should up-

date or adjust its rule base constantly to overcome the aforementioned 

problems. To do so, the dynamic of the controlled model is approximated 

in the reference model and the fuzzy controller learns from is to syn-

thesize and/or adjust its knowledge base during the flight, this method 

is called Model Reference Teaming Control (FMRTC) [14]. 

The choice of such combination of 'crisp' and fuzzy control can be 

justified by the following reasons: the order of the mathematical model 

is very high, and for satisfying of stability and performance require-

ments the controller must use information from many sensors. It in 

turn requires very large amount of inference rules and the knowledge 

base of the fuzzy controller would be unfeasible. In case of combined 

system fuzzy controller could be essentially simplified: two or even one 

input would be enough.  

Inner loop control law 

The inner loop controller is designed using the separation theorem 

[3, 9] to stabilize the true airspeed Vt and the pitch angle. The state 

space model of the controlled plant is given by the following matrices 

[ ]G,D,C,B,A , where nnRA ×∈ , qnRB ×∈ , npRC ×∈ , qpRD ×∈ , lnRG ×∈ , 

and is given by: 

vDUCXY

GwBUAXX

++=
++=

     (1) 

The vector w represents the process disturbances (wind turbulence), 

described by the outputs of the Dryden filter, v is the sensors noises. In 

order to apply the separation theorem it would be necessary to include 

the model of the wind turbulence. In this paper it is given by the Dry-

den filter [7]. Let the quadruple matrices [ ]drdrdrdr D,C,B,A  represents 

the state space model of the forming filter, where rr
dr RA ×∈ , 

2r
dr RB ×∈ , rl

dr RC ×∈ , rl
dr RD ×∈ , this task is performed using series 
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connection of the mentioned filter and the state space model of the 

UAV, the extended state space model of the overall model is described in 

the following: 
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The state space model represented in (2) is 'contaminated' by noises 

and some states are not available for measurement, which justifies the 

use of Kalman filter to restore the full measurements, after reconstruct-

ing the full states an optimal deterministic controller- state feedback is 

designed [9]. The optimal Kalman filter is defined as: 

( )UDX~CYLUBX~AX~ exexexexexex −−++=�  
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where L is the Kalman gain matrix given by the following expres-

sion: 
1

N
T
exRPCL −=      (4) 

and P is solution to the following Algebraic Riccati Equation 

(ARE): 

0PCRPCBQBPAPA ex
1

N
T
ex

T
exNex

T
exex =−++ −  (5) 

where NQ  and NR  are the covariance matrices associated to the 

measurement and process noises respectively. In accordance with separa-

tion theorem [5] state feedback K is given in the following expression: 

SBRK T
ex

1−=     (6) 

where S is the unique positive definite matrix of the ARE asso-

ciated to the optimal feedback problem: 

0QSBRSBSASA T
ex

1
exex

T
ex =+−+ −    (7) 

and the optimal control law minimizing the LQR performance in-

dex, is given as: 

exX~KU −=      (8) 

In accordance with separation theorem [5] crisp controller consists 

of combination of Kalman filter (3) and state feedback (8), and the state 

space model of the inner loop crisp controller is given in the following: 
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At this stage the crisp controller is synthesized and in the next pa-

ragraph we the trade off between the performances and the robustness is 

studied.  

Parameterization and robustization of the inner loop controller 

The most wanted and expected property of flight controller law is 

the robustness. Throughout the flight, the UAV is subject to the distur-

bances, which could be external and/or internal, structural and/or un-

structured and produce certain deviation from the nominal behavior to 

the perturbed one. This deviation could be represented by other model 

called parametrically perturbed model. The main idea of the ∞HH2  - 

robust optimization is to provide the same level of performances for the 

nominal and perturbed models with the same controller designed to the 

nominal. Many methods are proposed in the area of robust flight control 

[6, 7]. The method used in this paper is based on using the H2 - norm of 

the sensitivity function to estimate the performances of the control sys-

tem, ∞H  - norm of the complementary sensitivity function is used to es-

timate the robustness [16]. 

The nonlinear model of the plant is 'linearized' at N operating con-

ditions inside the flying envelope, after linearization N linear models 

are found; the control law is designed for one linear model and should 

keep the same performances and robustness for all N models. To do so 

the compromise should be found between the robustness and the perfor-

mances for all operating conditions. 

The sensitivity and complementary sensitivity functions are com-

puted for the N closed loop systems. It can be seen that these functions 

are depending on Kalman gain matrix L and state feedback K, hence 

these parameters constitute the variables of the optimization procedure. 

A composite performance index is formed from the estimation of 

the performances and the robustness for the N models based on the 

∞HH2  - norms computed for the different transfer functions [8, 11] of 

the block diagram depicted in the Figure 1. 
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Figure 1-The inner loop controller  

In the following expression the performance index to be optimized 

is given [6]: 
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where 
dn
2

S  defines the H2-norm of the nominal model in determi-

nistic case, �
−

=

1N

1k

dpk
2

S  stand for summation of the H2- norms of ( )1N −  

perturbed models. 
n

T ∞  is the ∞H -norm and gives the estimation of the 

robustness of the nominal controlled plant, �
−

=
∞

1N

1k

pk
T  computes the sum-

mation of the ∞H  norm for all ( )1N −  parametrically disturbed plants. 

sn
2

S  defines the performances of the nominal stochastic model, same 

summation of the H2-norm defined for all perturbed models with the ex-

pression �
−

=

1N

1k

spk
2

S . The LaGrange factors dnλ , snλ , dpkλ , spkλ , n∞λ , 

pk∞λ  define the weights of each term in the cost function.  

Outer loop control law 

The functional diagram of the fuzzy controller used in this study is 

depicted in the Figure 2. 
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Figure 2 - Block diagram of FMRLC  

It has four main parts [14]: the inner loop control model, which is 

described in the previous chapter; the fuzzy controller (FC), the refer-

ence model (RM) and the learning mechanism, which is divided into two 

parts fuzzy inverse model (FIM) and knowledge base modifier (KBM). 

The goal of this method is to synthesize fuzzy controller and to adjust 

its membership functions in order to withstand to the action of parame-

tric disturbances in the controlled plant. The different parts of the 

scheme are explained in the next section. 

Fuzzy control of the altitude 

The input to the FC is the error e(kT) between the reference alti-

tude r(kT) and altitude output h(kT) of UAV and the second input is 

the change rate of this error c(kT). The FC output is the �_ref(kT) and 

represents the reference input to the inner Attitude Control Loop (ACL). 

( ) ( ) ( )kThkTrkTe −=     (11) 

( ) ( ) ( )
T

TkTekTe
kTc

−−=     (12) 

The universes of discourse of the membership function of the FC 

are normalized to be between [–1  1] by the mean of scaling factors ge, 

gc and gu for error e(kT) , ñ(kT) and �_ref(kT) universe of discourse, 

respectively . The inference mechanism (IM) is Mamdani type, and it can 

be expressed in the form of IF-THEN, the input membership functions 

are implemented in BIMF1 for the altitude error and BIMF2 for the 

change in altitude error, the output membership functions are given in 

the BOMF1. The defuzzification method used in our case is the Center 
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Of Gravity (COG) and implemented in the block DF1, and the control ac-

tion is given by the following expression [15]: 
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Where ( )kTAl
n  and ( )kTcn  are the areas and the centers of areas, 

associated with the resulted fuzzy set from the aggregated fuzzy set 

[15].  

The reference model (RM) 

The reference model generates the desired performance of the over-

all process. In general, the reference model may be any type of dynami-

cal system. The performance of the overall system is computed with re-

spect to its output hm(kT) by generating an error signal, 

( ) ( ) ( )kThkThkTh me −=     (14) 

In our case the reference model approximated with second order 

model with settling time 30 seconds and without overshoot.  

The learning mechanism [14] 

As previously mentioned, the learning mechanism performs the 

function of modifying the knowledge base (membership functions) of the 

direct fuzzy controller so, that the closed loop system behaves like the 

reference model. These knowledge base modifications are made on the 

basis of observing data from the controlled process, the reference model 

and the fuzzy controller. In accordance with Fig. 2 the learning mechan-

ism consists of two parts: a fuzzy inverse model (FIM) and a knowledge 

base modifier (KBM). FIM performs the function of mapping the error 

( )kThe  and the change of error ( )kThc , to the changes of the FC output 

membership function's parameters [ ]Tr1 p,,pp �=  in BOMF1, which are 

necessary to force he(kT) to zero. These parameters are the shifts of po-

sitions of the output membership function's centers. KBM performs the 

function of modifying the fuzzy controller's knowledge base to perform 
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the needed change in the process inputs. More details of this process are 

discussed next. The fuzzy inverse model uses the same inference me-

chanism as the fuzzy controller (FC). It is not necessary for fuzzy con-

trol to accurately characterize the inverse dynamics; only approximate 

representation is needed [14]. FIM simply maps ( )kThe  and ( )kThc  to 

the necessary changes in the plant inputs, that is why it is called "fuzzy 

inverse model". Hence, FIM is used to characterize how to change the 

plant inputs to force the plant output h(kT) to follow ( )kThm  as close 

as possible. Likewise to the fuzzy controller, the FIM shown in Fig. 2 

contains normalizing scaling factors, namely heg , hcg  and pg  for each 

universe of discourse. Selection of the normalizing gains can impact the 

overall performance of the system. The knowledge base for the fuzzy in-

verse model is generated from fuzzy rules of the form: 
k,jk

cc
j
ee P is p~ THEN H is h~ AND H is h~ IF  

( )kTP k,j  is the necessary variation of the position of the member-

ship function's center, decreasing he(kT). 

The knowledge base modifier (KBM) 

KBM performs the function of modifying the FC rule base to 

achieve better performance. Given the information about the necessary 

changes in the plant input, which are represented by ( )kTp , to force the 

error he(kT) to zero, the knowledge base modifier change the FC rule-

base so that the previously computed control action ( )TkTref_ −θ  would 

be modified at the next step as follows: ( ) ( )kTpTkTref_ +−θ . By mod-

ifying the fuzzy controller's knowledge base, we may force the fuzzy 

controller to produce a desired output, which we should put in at time 

kT–T to make he(kT) smaller. Then the next time we get similar values 

for the error and change in error, the input to the plant will be one that 

will reduce the error between the reference model and the plant output. 

Assume that we use symmetric output membership function for the 

fuzzy controller, and let lb  denote the center of the membership func-

tion associated with ref_~
lθ . Knowledge base modification is performed 

by shifting centers lb  of the membership function of the output linguis-

tic value ref_~
lθ , which are associated with the fuzzy controller rules 
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that contributed to previous control action ( )TkTref_ −θ . This is two-

step process: 

1. Find all FC rules, which satisfy the following condition: 

( ) ( )( ) 0TkTc,TkTek �−−τ  (15) 

( )l,1k = , kτ  defines the set of the Degrees of Firing (DOF) of rules 

at time TkT − , also called "active set". 

2. Let lb  denote the center of lth output membership function 

at time êÒ. For all rules in the active set, use ( ) ( ) ( )kTpTkTbkTb lll +−=  

to modify the output membership function centers. Rules that are not in 

the active set do not have their membership function modified. KBM in-

cludes also the storage (see Fig. 2), which preserves the results of tun-

ing of membership functions, in order to be used when the output of the 

FC at time êÒ is the same at kÒ–1. 

Design and implementation of FMLRC [14] 

The total design procedure for the FMRLC, which is used in combi-

nation with "crisp" feedback, involves the following steps: 

- The specification of a direct fuzzy controller with consequent 

membership functions that can be tuned. This fuzzy controller can be 

chosen via conventional (heuristic) fuzzy control design techniques for 

the nominal plant. 

- Specifying the reference model of control system, which characte-

rizes the desired system performance. 

- Specifying the fuzzy inverse model, which characterizes how the 

inputs to the plant should be changed so, that the desired performance 

is achieved. 

- Selection of the normalizing gains for the fuzzy controller and the 

fuzzy inverse model. 

So far as the selection of the normalizing gains for both the fuzzy 

controller and the fuzzy inverse model can impact the overall perfor-

mance, it is necessary to provide a procedure for choosing these parame-

ters. Due to physical constraints for a given system, the range of values 

for the process inputs and outputs is generally known from a qualitative 

analysis of the process especially, when the crisp prototype of system is 

determined via some known procedure of control synthesis. As a result, 

we can determine the range of values or the universe of discourse for 
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( )kTe , ( )kTu , ( )kThe  and ( )kTp . Consequently, ge, gc, gu, ghe and gp are 

chosen so that the appropriate universes of discourse are mapped to [-1, 

1]. They could be determined on the basis of the "crisp" prototype by 

iteratively applying inputs to ( )kTr , observing ( )kTc , and finding scal-

ing factors to map the universes of discourse to the interval [-1, 1].  

Case study 

In this paper the longitudinal channel of unmanned aerial vehicle 

(UAV) Aerosonde in altitude and true airspeed stabilization mod is used 

as a case study. The full nonlinear model of this UAV is represented in 

[2]. The state space vector is [ ]Ωθ=    h      q   w   uX
�

, è, w - horizontal 

and vertical velocity component, respectively; q - pitch rate, � - pitch 

angle, h - altitude and � - engine spin (r.p.m.). The control vector is 

given by [ ]lhe   U δδ=
�

, where eδ  - elevator angle deflection, lhδ  - thrust 

control (engine throttle deflection). The range of the uncertainty is 

made for the true airspeed, which is given by the following expression 

222 wuV +ν+= , where � defines the lateral velocity component. We 

suppose that V changes in the interval 
sec

m
35V25 ≤≤ , for the sake of 

simplicity and without loss of generality three ( )3N =  models were de-

fined in our study, the nominal model is taken at secm30Vn = . The 

first perturbed is defined for secm25Vn =  and for the second per-

turbed model is defined for secm35Vn = . The next matrices give the 

respective states space models: 

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

−−
−

−−
−−−
−−−

=

85.363.00078.053.41

00300101.0

000100

00019.663.533.0

0018.03036.555.0

01.0078.955.038.0293.0

An ; 
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�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

−−
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−−
−−−
−−−

=

23.303.00068.135

00250104.0

000100

00015.548.443.0

0047.02547.456.0

01.0080.919.153.024.0

A 1p ; 
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�
�
�

�

�

−
−

=

3900

00

00

021.35
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035.0

B 1p    (17) 
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−−
−

−−−
−−−
−−−

=

43.478.00008.05.48

0035010

000100

01.00021.743.628.0

0001.03525.655.0

01.0082.905.028.035.0

A 2p ; 

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

−
−

=

3.30400

00

00

02.68

05

05.0

B 2p     (18) 

The models of actuators are connected to the model of the UAV in 

series and they are approximated by the first order model given in the 

following: 
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1p

1
W

act
act +τ

=  (19) 

where sec25.0act =τδ  stand for the time constant of the actuator 

and the subscript act δτ  can be either for elevator or throttle. 

In our design only four state variables are measured: [ ]h,,q,uX θ= , 

so the observation matrix is given as follows: 

[ ] [ ]� �T
13334114

T
13 0    I    0    0    0    1C ×××××=  

where I represents the unity matrix with appropriate dimension. 

The state vector [ ]θ= ,q,uXinner

�
 constitute the inner loop feedback, the 

state variable h is the injected to the fuzzy reference model learning 

control. As shown before, in order to apply the separation theorem a 

turbulence model represented by the Dryden filter [5, 6, 7], which has 

two inputs: horizontal and vertical wind gusts, the outputs are the lon-

gitudinal turbulent speed ( )gu , vertical turbulent speed ( )gw  and turbu-

lent pitch rate ( )gq . 

State space of the Dryden filter is defined by the following matric-

es: 

�
�
�

�

�

�
�
�

�

�

λ−λ−
λ−
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=

q
2
q

w

u

dr

1K0

010
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�
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�

�
λ
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=

00

K0

0K

B ww

uu

dr ;

�
�
�

�

�

�
�
�

�

�

λ
=

1K0

010

001

C

qq

dr  

where the subscript w corresponds to vertical components and è for 

the longitudinal. In our case the Aerosonde flies at an altitude of 200m, 

and in moderate turbulence. The parameters appearing in the state space 

of Dryden filter are given in the following [5, 6, 7]: 

( )VL2K uuu πσ= , VLuu =λ , 2.2Kw = , 6.0w =λ , V1Kq = , 

Vb4q π=λ , 

where b is the wing span of the Aerosonde b = 2.9m. The same pa-

rameters are defined for different models with different true airspeed V. 
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Simulation results 

The simulation results are given in the following figures, the table 

2 represents the H2-norms for the nominal model and the perturbed 

models in deterministic and stochastic cases, ∞H -norm is also computed 

and is given in the table.  

The covariance matrices of the process noises and measurement 

noises are equal to [ ]( )2    5.1diagRn = , [ ]( )004.0    1.0    5.0diagQn = , 

respectively, they are defined by the accuracy of the sensors. The weight-

ing matrices Qr, Rr for the optimal deterministic performance are given 

as: [ ]( )0.1   0.1   0.1   0.1   0.1   0.00013   0.5   0.1   2   20diagQr = , 

[ ]( )1    1diagRr = . Using the above models it is possible to define an ex-

tended model containing 10 states, so the Kalman filter is using 3 

measured states to restore 10 ones. On the basis of separation theorem 

the restored states are controlled by the deterministic optimal controller 

and the gain matrix Ê in (6) is found as follows: 

�
�

�
�
�

�=
3.027    0.267    0.100-    0.118    0.316-    0.011    9.961-    0.174-    0.313    514.3

0.253    5.058    0.679-    0.424    0.337-    0.001    6.838-    1.373-    0.022    576.0
K  

For the sake of brevity in this paper the Kalman gain L, is not giv-

en.  

The outer loop is used to hold the altitude at the reference value. 

Parameters of the fuzzy model reference learning control are set as fol-

lows; the input scaling factors of the fuzzy controller (FC), ge=0.004 and 

gc=0.2 for the altitude error and change in altitude error, respectively, 

the output of FC is normalized to the interval [ ]1,1−  with scaling gu=3. 

The initial rule base of the fuzzy controller is shown in the Table 1. 

The entries to this table are the centers of the output membership 

functions, which are chosen in this report to be symmetric triangular. 

The fuzzy inverse model (FIM) has the same structure with the follow-

ing scaling factors ghe=1/100 for the error and ghc=8 for the change rate 

of the error, the output membership functions are normalized with scal-

ing gp=0.05. 

The reference model used in the simulation is a second order block 

represented in the following state space model 

�
�

�
�
�

� −−
=

05.0

1701.01701.1
Ar ; �

�

�
�
�

�=
0

1
Br ; [ ]1701.00Cr = ; 0Dr = . 
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Table 1 

Initial rule base of fuzzy controller (FC) 

( )kTU j,i  ( )kTe i

( )kTcj  

 -1 -0.8 -0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 

-1 -1 -1 -1 -1 -1 -1 -0.8-0.6-0.4-0.2 0 

-0.8 -1 -1 -1 -1 -1 -0.8-0.6-0.4-0.2 0 0.2

-0.6 -1 -1 -1 -1 -0.8-0.6-0.4-0.2 0 0. 2 0.4

-0.4 -1 -1 -1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6

-0.2 -1 -1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0  60.8

0 -1 -0.8 -0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 

0.2 -0.8-0.6 -0.4-0.2 0 0.2 0.4 0.6 0.8 1 1 

0.4 -0.6-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1 1 

0.6 -0.4-0.2 0 0.2 0.4 0.6 0.8 1 1 1 1 

0.8 -0.2 0 0.2 0.4 0.6 0.8 1 1 1 1 1 

1 0 0.2 0.4 0.6 0.8 1 1 1 1 1 1 

 

The following figures show the simulation results with the altitude 

reference signal is h_ref=50m, and the reference signal corresponding to 

the velocity is V_ref=5m/sec. 

Table 2  

H2 -norm of the sensitivity function and H∞-norm of the complementary 

Sensitivity function 

Plant H2 H2 H∞ 

Vn=30 [m/s] nominal 0.2901 1.1725 0.0021

Vp1=25 [m/s] Perturbed 1 0.7033 1.1725 0.0021

Vp2=35 [m/s] Perturbed 2 0.3117 1.3749 0.0033

    
 a.    b. 
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 c.     d. 

Figure 3 – Simulation results of Aerosonde longitudinal channel. 

a. velocity of UAV nominal and perturbed models; 

b. angle of attack of UAV nominal and perturbed models; 

ñ. pitch angle of UAV nominal and perturbed models; 

d.altitude of UAV nominal and perturbed models. 

In the next table the adjusted rule base is given after simulation for 

the nominal model, for the sake of brevity the rule base for the first and 

the second perturbed model are not shown. 

The entries of the rule base changed after the adaptation procedure 

are shown inside the bold rectangular. 

Table 3 

( )kTU j,i  ( )kTe i  

( )kTcj  

 -1 -0.8 -0.6-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

-1 -1 -1 -1 -1 -1 -1 -0.8 -0.6 -0.4 -0.2 0 

-0.8 -1 -1 -1 -1 -1 -0.8 -0.6 -0.4 -0.2 0 0.2

-0.6 -1 -1 -1 -1 -0.8 -0.6 -0.4 -0.2 0 0. 2 0.4

-0.4 -1 -1 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.2 -1 -1 -0.8-0.6 -0.467 -0.222 0.047 0.2 0.4 0  60.8

0 -1 -0.8 -0.6-0.4 -0.34 -0.0027 0.33 0.4 0.6 0.8 1 

0.2 -0.8 -0.6 -0.4-0.2 -0.65 0.218 0.483 0.6 0.8 1 1 

0.4 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1 1 

0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1 1 1 

0.8 -0.2 0 0.2 0.4 0.6 0.8 1 1 1 1 1 

1 0 0.2 0.4 0.6 0.8 1 1 1 1 1 1 
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Conclusion 

The purpose of the paper has been to design robust autopilot using 

combination of crisp control with hard computing and fuzzy control 

with soft computing. Procedure of robust ∞HH2  optimization has been 

used to achieve the trade-off between the robustness and performances 

of the system with crisp structure for inner-loop; the table 2 shows the 

efficiency of the procedure. The effectiveness of the proposed control 

scheme has been tested by computer simulation; the figures show that 

the flight requirement was respected for the nominal as well as for the 

perturbed models. The maximum angles deflections are all respected – 

33 <α< , 164 <θ<− , and the altitude h is held at the reference signal 

(50m) as shown in the last figure. The velocity reference signal 

(5m/sec) is also tracked and is given in the first figure. All these def-

lections satisfy the specifications for this UAV. 
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