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Introduction

Nowadays artificial neural networks (ANN) have gained the
significant prevalence for solving the wide class of the information
processing problems, uppermost for the identification, emulation,
intelligence control, time series forecasting of arbitrary kind under
significant noise level, and also the structural and parametric
uncertainty. The multilayer feedforward networks of three-layer
perceptron type are the most known and popular. The efficiency of the
multilayer networks is explained by their universal approximation
properties in combination with relative compact presentation of the
simulated nonlinear system. The principal disadvantage of the
multilayer networks is the low learning rate which is based on
backpropagation algorithm which makes their application in the real
time tasks impossible. Alternative to the multilayer ANN are the radial
basis function networks (RBFN), having one hidden layer [1-7]. The
principal advantage of RBFN is the high learning rate in the output
layer, because the turning parameters are linearly included to the
network description. At the same time the problem of neurons centers
allocation is remaining, and its unsuccessful solving leads to the «curse
of dimensionality» problem.

Along with neural networks for the arbitrary type signals
processing, in the last years the wavelet theory is used sufficiently often
[8], providing the compact local signal presentation both in the
frequency and time domains. At the turn of the artificial neural
network and wavelets theories the wavelet neural networks [9-12] have
evolved their efficiency for the analysis of nonstationary nonlinear
signals and processes. Elementary nodes of the wavelet neural networks
are so-called radial wavelons. The receptive fields for such wavelons are
hyperellipsoids with axes which are collinear to coordinate axes of the
space X .

© Bodyanskiy Ye., Vynokurova O., 2008

ISSN 1562-9945 129



3 (56) 2008 “Cucremubie TexHogoruu’. Tom 2

Taking into consideration the equivalence of radial basis ANN and
fuzzy inference systems [13], and also possibility of using even wavelet
as a membership function [14], within the bounds of the unification
paradigm [15] we can talk about such hybrid system as Radial-Basis-
Function-Wavelet-Neuro-Fuzzy Network (RBFWNFN) having the radial-
basis function network fast learning ability, fuzzy inferences systems
interpretability and wavelet’s local properties.

Mostly tuning algorithms based on square learning criteria and in
the case of the processing data being contaminated by outliers with
unknown distribution law, have shown themselves very sensitive to
anomalous outliers. Thus the actual task is a synthesis of the robust
learning algorithms that allow signal processing in presence of
anomalous outliers.

This paper is devoted to synthesis of robust learning algorithm
RBFWNN, which has adjustable level of insensitivity to the different
kind of outliers, rough errors, non-Gaussian disturbances, has high
convergence rate and provides the advanced approximation properties in
comparison with conventional computational intelligence systems.

1. Radial-basis-fuzzy-wavelet-neural-network architecture

Let us consider the two-layers architecture that coincides with the
traditional radial-basis neural network. The input layer of the
architecture is the receptor and in current time instant 4 the input

signal in vector form x(k):(xl(k),xz(k),...,xn(k))T is fed on it. Unlike

radial basis function network the hidden layer consists of not by R-
neurons, but by wavelons with wavelet activation function in form

0, (x(0) =0 (0 = ¢) 07 (k) =), J=1,2,...., (1)
in which the positive-definite dilation matrix QJ- is used, i.e. it is

Itakura-Saito metric. This results to the fact that receptive field —
wavelons hyperellipsoids can have the arbitrary orientation relatively to
the coordinate axes of space X, what extends the functional properties
of RBFWNN.

And at last, the output layer is the common adaptive linear

associator with tuning synaptic weights w;t

L T A1 T
£(k) = wp + zleq)((x(k)—cj) 0;" (x(k) = ¢))) = w! p(x(k)), (2)
J:
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where gy (x(k)) =1, w = (wo Wi Waueow)) 5 @(x(k)) = (L (x(K)). 05 (x(K))
ey (R
2. The robust learning algorithm for RBFWNFN

The experience shows that the identification methods based on the
least square criterion are extremely sensitive to the deviation of real
data distribution law from Gaussian distribution. In presence of various
outliers, an outrage errors, and non-Gaussian disturbance with “heavy
tails” the methods based on the least square criterion loose their
efficiency. In this case the methods of robust estimation [16] which can
be used too for the learning of the artificial neural networks [17, 18]
appear on the first role.

Introducing into the consideration the learning error

e(k) = y(k)~ £(k) = y(k) —w' (K)p(k) (3)
and robust identification criterion by R. Welsh [19, 20]
E(k) = f(k)=p* ln(cosh(e(k)/ﬂ)) , 4)

where [ is a positive parameter, that is chosen from empirical
reasons and defining the size of zone of tolerance to outliers. It is
necessary to note, that robust criterion (4) satisfies to the metric space
axioms.

Further we shall consider synthesis of the learning algorithms. For

the synaptic weights and the waveleon parameters (vectors ¢; and

matrices Q}l) tuning we use gradient minimization of criterion (4), thus

unlike the component-wise learning considered in [7], we shall make
some correction in the vector-matrix form, that, firstly is easier from
computing point of view, and secondly it will allow to optimize learning
process on the operation rate.

For arbitrary wavelet ¢((x(k)—c j)T Q}l(x(k)—c 7)) we can write
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V. E(k) = ~ptanh (e(k)/ ) p; ((x(k) — ¢, (k) OF () (x(k) —¢; (k) =

= —tanh (e(k)/ B)J,,(k),

V. E(k) = Btanh(e(k)/ B)w; (k)p ((x(k) = ¢; (k) Q' (k) (x(k) = (k)
05 (k)(x(k) —¢; (k) = tanh (e(k)/ B) .., (k)

{0 (k)00 | = - tanh (e(k)/ B) w; (k) (x(k) — ¢; (k) ©; (-

(k) = ¢ (RN)R) = ¢ (RNx(k) = e (k) =~ tanh (e(k)/ B) 1 (k)

where V E is vector-gradient of the criterion (4) on w, chE is

()

(nx1)-vector-gradient on c;; {GE(k)/ 8QJ_~1} is (nxn)-matrix, formed the

partial derivatives £ on components Q]_-l; s Tle; s UQ’l are the learning
J

rates; (oj'(O) is the derivative j-th wavelet on the argument

(X(k)—Cj(k))Tle(k)(X(k)—Cj(k))-
Then the wavelons learning algorithm of the hidden layer subject to
(5) is taking the form

w(k+1) = w(k) + 17, Stanh ()] ), (x(k) —¢; ()" Q5 (R)x(k) —¢; (k) =
=w(k)+1, tanh (e(k)/ ) J,,(k),

¢j(k+1)=c;(k)~n,, Sranh (k)] B)wi (k)] ((6(k) =, (k) 05 (W)Ge(h) —;(K))-
07 (0atk)—¢; (k) =c; (0) =, tanh (ek)] )], k), ©)
07 (1) =05 (k)-+1,, 1 tanh k)] B)w; (00} ((x(k) =e; () 05 ()

(X0 =¢; (M) = ()x(hk) =€, (k)" = 05 (k)+7 .1 tanh (e(k)/ B)J 1 (k).

For the Polywog wavelet [21] we can rewrite the algorithm (6) in

the relatively simple form
w(k +1) = w(k) +1,, tanh (e(k)/ ﬂ)(l —‘Pz)exp(—‘l’z /2),

¢;(k+1)= cj(k)—ncjﬂtanh(e(k)/ﬂ)wj(k)‘l’(‘P2 —3)exp(—‘P2 /2)-

0, (k)(x(k) = ¢ ; (k)), (7)
07 (k+1)= 07 (k) + qQ;Iﬁtanh(e(k)/ﬂ)wj(k)\P(\112 —3)exp(—‘P2 /2)-

(x(k) —¢; ()x(k) —c; (k)
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where ¥ = ((x(k) —¢; ()T 07 (k) (x(k) — ¢, (k))) .

Conclusion

In the paper computationally simple and effective robust learning
algorithm of all RBFWNN parameters is proposed. This learning
algorithm allows on-line processing of non-linear signals under a number
of outliers and “heavy tails” disturbations. Addition of wavelons
receptive fields, including their transformations (dilation, translation,
rotation) permits improve the network approximation properties, that is
confirmed by the experiments research results.
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