УДК 389.001

В.И. Корсун, В.Т. Белан, В.Г. Тарасенко, О.Ю. Каранда

ОЦЕНКА ПОГРЕШНОСТИ ПРОЦЕССА АДАПТИВНОЙ ИДЕНТИФИКАЦИИ ПАРАМЕТРОВ КВАЗИСТАЦИОНАРНОГО ОБЪЕКТА ПОСРЕДСТВОМ ДВУХ МОДЕЛЕЙ С ПЕРЕСТРАИВАЕМЫМИ СТРУКТУРАМИ

Введение

В настоящее время существующие средства измерительной работающие В динамическом техники, режиме, по качеству метрологических характеристик значительно уступают статическим. В то же время, требования, предъявляемые к точности результатов динамических измерений, все более приближаются к требованиям, измерениях. Проблема которые ставятся при статических обеспечения высокой точности динамических измерений до сих пор остается нерешенной [1-3].

Задача измерения динамических характеристик объектов управления, средств измерительной техники относится в метрологии области совместных измерений, поскольку предполагает к одновременное нахождение нескольких параметров по данным измерения соответствующих сигналов.

Цель работы

Целью работы погрешностей данной является оценка идентификации параметров квазистационарной модели объекта управления помощью одного алгоритмов адаптивной из идентификации, построенного принципов использованием \mathbf{c} симметрии.

Основные исследования

В работе [4] описан алгоритм последовательной идентификации параметров квазистационарного объекта управления, динамика которого подчиняется дифференциальному уравнению:

$$\sum_{i=1}^{3} a_i x^{(i)}(t) + a_0 x(t) = f(t), \quad x^{(j)}(0) = 0, \quad j = \overline{0,2} \quad , \tag{1}$$

ISSN 1562-9945 143

[©] Корсун В.И., Белан В.Т., Тарасенко В.Г., Каранда О.Ю., 2008

при помощи двух взаимодействующих моделей, чьи структуры изменяются после того, как очередной параметр $a_i \left(i = \overline{0,3}\right)$ будет идентифицирован.

Динамика адаптивных моделей при этом подчиняется дифференциальным уравнениям:

$$\begin{cases} \sum_{i=1}^{3} b_{i} y^{(i)}(t) + b_{0}(t) y(t) = \varphi_{0}(t), \\ \sum_{i=1}^{3} c_{i} z^{(i)}(t) + c_{0}(t) z(t) = \varphi_{0}(t), \end{cases} y^{(j)}(0) = z^{(j)}(0) = 0, \quad j = \overline{0,2} ;$$

$$\begin{cases}
\sum_{i=2}^{3} b_i y^{(i-1)}(t) + b_1(t) y(t) = \varphi_1(t), \\
\sum_{i=2}^{3} c_i z^{(i-1)}(t) + c_1(t) z(t) = \varphi_1(t),
\end{cases} y^{(j)}(0) = z^{(j)}(0) = 0, \quad j = \overline{0,1} ; \qquad (2)$$

$$\begin{cases} b_3 y^{(1)}(t) + b_2(t) y(t) = \varphi_2(t), \\ c_3 z^{(1)}(t) + c_3(t) z(t) = \varphi_2(t), \end{cases} y (0) = z (0) = 0; \qquad \begin{cases} b_3(t) y(t) = \varphi_3(t), \\ c_3(t) z(t) = \varphi_3(t), \end{cases}$$

где

$$\varphi_{0}(t) = f(t) = 1[t], \ \varphi_{1}(t) = \int_{0}^{t} f(t)dt - a_{0} \int_{0}^{t} x(t)dt,$$

$$\varphi_{2}(t) = \int_{0}^{t} \int_{0}^{t} f(t)dt^{2} - a_{0} \int_{0}^{t} \int_{0}^{t} x(t)dt^{2} - a_{1} \int_{0}^{t} x(t)dt,$$

$$\varphi_{3}(t) = \int_{0}^{t} \int_{0}^{t} \int_{0}^{t} f(t)dt^{3} - a_{0} \int_{0}^{t} \int_{0}^{t} x(t)dt^{3} - a_{1} \int_{0}^{t} x(t)dt^{2} - a_{2} \int_{0}^{t} x(t)dt.$$
(3)

Здесь a_i $(i=\overline{0,3})$ - параметры объекта управления.

Изменение параметров $b_i(t)$ и $c_i(t)$ $(i=\overline{0,3})$ адаптивных моделей (2) осуществляется в соответствии с алгоритмом:

$$\begin{cases} b_i^{(1)}(t) = -k_i [(2x(t) - y(t))b_i(t) - z(t)c_i(t)], & b_i(0) = b_{i0}, \\ c_i^{(1)}(t) = -k_i [(2x(t) - z(t))c_i(t) - y(t)b_i(t)], & c_i(0) = c_{i0} \neq b_{i0}. \end{cases}$$

$$(4)$$

Приведенный выше алгоритм (4) обеспечивает сближение параметров $b_{\scriptscriptstyle 0}(t)$ и $c_{\scriptscriptstyle 0}(t)$ в соответствии с выражением

$$b_0(t) - c_0(t) = (b_{00} - c_{00}) \exp\left(-2k_0 \int_0^t x^2(t)dt\right),$$

Если считать, что движение перечисленных параметров прекращается при условии $|b_0(T)-c_0(T)| \leq \delta$ (T - продолжительность переходного процесса идентифицируемого объекта, при которой справедливым является выражение $|x(T)-x(\infty)| \leq \xi$, а δ и ξ - сколь

угодно малые положительные величины), тогда коэффициент k_0 может быть рассчитан по формуле

$$k_i = 0.5 \ln \frac{\left| b_{i0} - c_{i0} \right|}{\delta} / \int_0^T x^2(t) dt$$
, $i = (\overline{0,3})$. (5)

Здесь следует заметить, что параметры $b_0(t)$ и $c_0(t)$, сближаясь, асимптотически сходятся к идентифицируемого параметру a_0 объекта (1).

Действительно, после прекращения переходных процессов на выходах объекта и настраиваемых моделей x(t), y(t) и z(t) могут быть представлены следующим образом:

$$x(t) = \varphi_0(t)/a_0$$
, $y(t) = \varphi_0(t)/b_0(t)$, $z(t) = \varphi_0(t)/c_0(t)$. (6)

Подставив значения x(t), y(t) и z(t), найденные по формулам (6) в выражения алгоритма (4), получим:

$$\begin{cases}
b_0^{(1)}(t) = -k_0 \frac{\varphi_0(t)}{a_0} \left[\left(\frac{2\varphi_0(t)}{a_0} - \frac{\varphi_0(t)}{b_0(t)} \right) b_0(t) - \frac{\varphi_0(t)}{c_0(t)} c_0(t) \right] \\
c_0^{(1)}(t) = -k_0 \frac{\varphi_0(t)}{a_0} \left[\left(\frac{2\varphi_0(t)}{a_0} - \frac{\varphi_0(t)}{c_0(t)} \right) c_0(t) - \frac{\varphi_0(t)}{b_0(t)} b_0(t) \right] \end{cases}, b_0(T) = b_0^*, c_0(T) = c_0^*.$$
(7)

Упростим выражения (7):

$$\begin{cases}
b_0^{(1)}(t) = -\frac{2k_0\varphi_0^2(t)}{a_0^2}(b_0(t) - a_0) \\
c_0^{(1)}(t) = -\frac{2k_0\varphi_0^2(t)}{a_0^2}(c_0(t) - a_0)
\end{cases}, b_0(T) = b_0^*, c_0(T) = c_0^*$$
(8)

Поскольку $a_0 \approx const$, то решение системы (8) имеет вид:

$$\begin{cases} b_0(t) = a_0 + (b_0^* - a_0) \exp\left(-\frac{2k_0}{a_0^2} \int_T^t \varphi_0^2(t) dt\right) \\ c_0(t) = a_0 + (c_0^* - a_0) \exp\left(-\frac{2k_0}{a_0^2} \int_T^t \varphi_0^2(t) dt\right) \end{cases}$$

$$(9)$$

В выражениях (9) $\lim_{t\to\infty}\int\limits_T^t \varphi_0^2(t)dt=\infty$. Поэтому $b_0(t)\to a_0$ и $c_0(t)\to a_0$ при $t\to\infty$.

Поскольку при $\tau >> T$ оценка значения a_0^* определяется выражением $a_0^* = \left(b_0(\tau) - c_0^*(\tau)\right)/2 = a_0 + \Delta_0$, то вместо входного воздействия $\varphi_1(t)$ (3) при идентификации очередного параметра a_1 модели объекта (1) будет использован сигнал:

$$\overline{\varphi_1}(t) = \int_0^t f(t)dt - a_0^* \int_0^t x(t)dt = \int_0^t f(t)dt - a_0 \int_0^t x(t)dt - \Delta_0 \int_0^t x(t)dt = \varphi_1(t) - \Delta_0(t), \quad (10)$$

ISSN 1562-9945 145

где
$$\Delta_0(t) = \Delta_0 \int_0^t x(t) dt$$
.

146

В этом случае после окончания переходных процессов на выходах объекта и настраиваемых моделей выходные сигналы x(t), y(t) и z(t) могут быть представлены выражениями:

$$x(t) = \varphi_1(t)/a_1$$
, $y(t) = \overline{\varphi}_1(t)/b_1(t)$, $z(t) = \overline{\varphi}_1(t)/c_1(t)$. (11)

Подставив значения выходных сигналов объекта и моделей, найденные по формулам (11) с учетом (10) в выражения алгоритма (4), получим:

$$\begin{cases}
b_1^{(1)}(t) = -\frac{2k_1\varphi_1^2(t)}{a_1^2}(b_1(t) - a_1) - \frac{2k_1\Delta_0}{a_1}\varphi_1(t) \int_0^t x(t)dt \\
c_1^{(1)}(t) = -\frac{2k_1\varphi_1^2(t)}{a_1^2}(c_1(t) - a_1) - \frac{2k_1\Delta_0}{a_1}\varphi_1(t) \int_0^t x(t)dt
\end{cases}, b_1(T) = b_1^*, c_1(T) = c_1^* \neq b_1^*. (12)$$

Из формул (12) видно, что при $t\to\infty$ значение $b_{\rm l}(t)\to a_{\rm l}+\Delta_{\rm l}$, а значение $c_{\rm l}(t)\to a_{\rm l}+\Delta_{\rm l}$, где $\Delta_{\rm l}$ - погрешность идентификации параметра $a_{\rm l}$ объекта управления.

Выводы

Рассуждая аналогично, найдем, что и оценки остальных параметров a_2 и a_3 модели объекта будут иметь некоторые смещения Δ_2 и Δ_3 , котрые могут быть существенно уменьшены соответствующим выбором коэффициентов k_i $(i=\overline{0,3})$.

ЛИТЕРАТУРА

- 1. Грановский В.А. Динамические измерения: основы метрологического обеспечения. Л.: Энергоатомиздат, 1984. 224 с.
- 2. Захаров И.П., Сергиенко М.П. Исследование погрешности идентификации переходных характеристик апериодических измерительных преобразователей методом Прони // Радиоэлектроника и информатика. -2004. №1.- C.44-47.
- 3. Захаров И.П., Сергиенко М.П. Исследование характеристик случайной погрешности определения постоянных времени апериодических измерительных преобразователей // Радиотехника, 2004. Вып.139.- с.125-129.
- 4. Корсун В.И. Методы и системы адаптивной идентификации и управления, использующие принципы симметрии. Днепропетровск: ГНПП «Системные технологии», 1997. 130 с.

Получено 17.03.2008 г.