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ON THE LADLE-FURNACE

Abstract. The mathematical model of the industrial process is presented.
Three-dimensional movement of the wire, one-dimensional melting of the wire
with a crust and three-dimensional movement of the molten steel with powder
averaging in it is taken into account. The mathematical model is implemented
in the computer program to check its quality and to make computational ex-
periments.
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Introduction

Cored wire injection is a modern method of molten steel refining.
Finding of rational technological parameters of this process is expensive
in industrial and laboratory experiments. This paper presents a
mathematical model for numerical experiments on the computer, which
are cheaper and widely used today.

Related work

In work [1] the authors considered the thermodynamics of wire in
the cross-section with the crust of slag and steel. In [2] the authors ne-
glected appearance of the crust. We think that thermodynamics is not
enough to reproduce the process of wire injection, because in addition to
wire melting there are three-dimensional motion of the wire and powder
averaging affected by hydrodynamics during gas blowing. In [3] a three-
dimensional mathematical model of the wire motion was implemented in
the computer program and the adequacy of the model was tested, but
ability of free movement of wire's part was not taken into account. In
[4] a three-dimensional model of granule melting with crust was created
— we will use it for one-dimensional wire melting. In [5] suitable to our
problem three-dimensional model of the hydrodynamics was constructed
in cylindrical coordinates and the results of numerical experiments were
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presented. The authors of the work [6] offered own method of cored wire

input, in which the parts of the wire can disconnect — in this article we
will take the free movement of these parts into account.
Mathematical model

The article aims to build a model of cored wire injection in the
melt during blowing on ladle-furnace. Given the complexity of model we
will build it by solving the following tasks:

1) The problem of three-dimensional motion of cored wire, as a
system of solids. A three-dimensional solution is needed to determine
the trajectory and coordinates of powder's or wire's part release;

2) One-dimensional problem of wire melting with crust
appearance. Given the small thickness of the wire shell (~ 1 mm), heat
flow along the wire is neglected;

3) The problem of three-dimensional motion of the molten steel
and powder averaging in it. Different locations and number of blowing
tuyeres cause the finding of three-dimensional velocity field of the melt.

Let’s go to first problem. Cored wire is modeled by chain of rods.
The force of hydrodynamic resistance of the melt, the force of gravity,
the buoyancy and force of bending elasticity act on the rods. Schemati-
cally chain of rods is shown in Figure 1. Reference point is a ladle bot-
tom center.

Xk

Fig. 1. Cartesian and spherical coordinates of k-th rod
Assumptions:
1) The wire is unstretchable and incompressible;
2) The torsion of the wire is neglected;
3) The angles between the rods are small, so Hooke's law
performs when wire bends;
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4) The melt's resistance to rod rotation is neglected and only the

component of velocity, which is perpendicular to rod, is taken into ac-
count to determine the resistance;

The dynamics of the rod's system is determined by Lagrange
equations of the second kind [3, 7, 8], taking into account the potential
and dissipative forces:

d oT oT _ 8U+Q~ i-1.5 1)
dt 0gq, éqi aq,

12

where T and U — respectively the kinetic and potential energy of the rod

system, Ql — generalized dissipative forces, q; — generalized coordinates.
We choose angles of a spherical coordinate system as generalized
coordinates: polar 6 and azimuthal ¢. Number of freedom degrees S is
dual count of rods.

The kinetic energy T (1) is determined using Cartesian
coordinates of the centers of rods masses and their velocities expressed
in generalized coordinates 0 and o:
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where ® and o — angular velocities for the angles 6 and ¢ respectively,
mk — weight of k-th rod, 1 — length of the rod.
The potential energy of the system (1):

3 Lo K, 2
U=Z g(]-_ )mk2k+ (Ak_l//k) ’
k=1 P 2

k
where g — gravitational acceleration, pO0 and py, — respectively melt
density and average density of the k-th rod (p0 depends on the rod

location — steel, slag, air), k, — coefficient of elasticity in the compound

of (k-1)-th and k-th rods, A, — angles between them, Yk — angles of

permanent deformation. Assuming that the angles Ay are small, we
define them using the formula:

A2 = NG} + AgPsin’a,,
where 4% =0 =0k , AP = P — Pp1

Let's find the generalized forces of resistance 9 (1):

~ N . oF
0= 1 ~a—",
k=1 q;

where "k — the radius-vector of the center of k-th rod mass with coordi-

nates xy, Vi, Zx. Let Wk be the velocity of the mass center of the k-th rod

relative to the melt, and le _ the direction of the rod, then let’s define
the resistance and rod’s perpendicular velocity component:

11

Jo=—C, 2y,

Wi =W, — (e -l 117,
where C, — dimensionless drag coefficient, p — density of the melt, A —
area of longitudinal section of the rod (rod's diameter multiplied by
rod's length).

The system (1) is not solvable analytically after differentiating,
therefore, to get the numerical solution let's divide the time axis into
layers and replace derivatives by corresponding velocities and accelera-
tions, suggesting their constancy at each time step. We have obtained a
system of linear algebraic equations in which the number of unknown

angular accelerations equals the number of equations. We use classical
iterative Gauss-Seidel method to solve the system. The rod’s angles and
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speeds for the next time step is determined from the Euler-Cromer

method:
ol = @ + alAt,
ol = o} + BrAtL,
ot =0 + wp AL,

n+1l n n+1l
=@, +0, At,

where (n+1) — the next time step, a and B — angle accelerations for 6 and
¢ respectively, At - time step.

The above solution of the problem takes into account the change
in the current number of rods. The length of the wire's part in the melt
increases with constant injection speed v0. The extending of this part is
doing by the addition of the rod at the wire's entry point in the time
step, which is defined as the ratio of the rod length 1 and input speed
vO0.

Let's pay attention to the components x0, y0, z0 in (2), and let's
state that they depend on the input angles and known input wire speed
v0, so they are easy to identify in time. But if part of wire has been dis-
connected and moves independently in the melt [6], then the components
x0, y0, z0 in (2) is unknown. For this case we have new three
generalized coordinates (x0, y0, z0) in the mathematical model and after
differentiation of equations (1) we obtain a new system with increased
number of equations by three and unknowns ax0, ay0, az0. So in this
way the free movement of the disconnected part has been considered.

Space for the wire's motion is restricted by bottom and walls of
the ladle. Let's assume that taking into account the coordinates of rod
mass center is sufficient for collision detection, so let’'s set impact
conditions of the rod with a ladle and determine the angular velocity,
which recovered after collision:

5 5 @, = ?(v}; cosd, cos@, — v;: cosd, sing, )
Xty >R —> ,
o, = 7(v}§ sind, sin g, — vy sing, cos g, )
b . .
2y <0— =7vks1nt9 ,
where R — ladle radius, b — the coefficient of restitution of angular ve-

locity.
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Thus three-dimensional model of the wire's motion was built.

Now we turn to the problem of melting.

The mathematical model of rod's melting is based on the finite-
volume method in cylindrical coordinate system [4]. We introduce the
following assumptions:

1) The heat flow along the wire is neglected and only radial flow
is considered;

2) The break of crust under internal pressure and possible
removing of the crust’s pieces are ignored;

3) The movement of substance inside the wire is neglected;

4) We assume that the liquid material of the wire is mixed with
molten steel instantly.

Let's assume that areas with homogeneous material occur in wire
during melting. All areas consist of finite volumes. We will determine

the flow of heat on the faces of volumes. Let’'s consider these areas
(Fig. 2):

I I I 1w VvV VI
Fig. 2. Areas in schematic cross section of the cored wire (I — powder,
II — wire's shell, III — shell's liquid material, IV — crust of melt,
V — crust formation, VI — molten slag or steel)

I. Area of powder that has own thermal properties (eg low
thermal conductivity);

II. Area of solid wire shell (usually thin);

III. Area of liquid material of the shell. This area occurs when
shell material becomes liquid — heated above T;° (the liquidus tempera-
ture of shell’s material).

IV. Area of melt's crust expands layer by layer when cold (with
respect to melt) surface of the wire causes rapid heat loss in a thin layer
of on-surface melt and then solidification at a temperature below TV
(the solidus temperature of the melt).

V. Area of crust formation has a thickness in one finite volume
and is always on the surface of the wire.
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VI. Ambient environment of the wire. It may be the atmosphere

if the wire lies on the slag. This may be molten slag, steel or their inter-
face, depending on the location of the wire in a given time. Thermo- and
hydrodynamics is taken into account by the empirical heat transfer coef-
ficient.

Next we will define heat flows. At the edge of areas V and VI we
have convective boundary condition (III type):

q=a-S-(T—Tp),
where a — the heat transfer coefficient, S — the area of volume face, T,
— the temperature of the melt, T — temperature in surface volume.

At the edge of areas IV and V it is a diffusion heat flow, as meas-
ured by Fourier law:

where 1 — thermal conductivity, which is determined by the harmonic
mean of corresponding thermal conductivities of neighboring cells [9], S
— the area of volume face, L — distance between the centers of volumes,
T; and T;; — temperatures of corresponding volumes. Also, the law de-
termines the thermal diffusion flows inside wire.

The heat of phase transition of the volume material included in
the effective heat capacity [10].

Over time, temperature of volume material reaches the melting
point of the crust and melt fills corresponding volumes. However, some
volumes can have the remaining solid material inside and crust can ap-
pear again.

After shell's melting the powder enters the steel and increases
the concentration in the appropriate place of the ladle. Corresponding
rod is removed. If rod has been melted in the middle of the chain, then
we disconnect part of the chain and its calculation takes the free move-
ment into account.

Thus one-dimensional problem of wire's melting is solved with
crust appearing. The advantage of the finite-volume method is conserva-
tive difference scheme. Next let's consider hydrodynamics.

We will solve the problem of molten steel motion and powder av-
eraging using known Navier-Stokes equations and convection-diffusion
equation with the following assumptions [5]:
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1) The molten steel is a homogeneous viscous incompressible New-

tonian fluid;

2) The ladle has the shape of a cylinder;

3) The melt surface is smooth and only the dynamic pressure is
considered;

4) The influence of the powder's and wire's movement to the melt
hydrodynamics is neglected;

8—V=—(\7-V)-17+VA\7—le,
ot 0
V-v=0,

oc

— =V(DVo)= V- (Fe),

where v — velocity vector field, V — Del operator, A — vector Laplace
operator, t — time, v — kinematic viscosity coefficient, p — density, p —
pressure field, ¢ — concentration field of powder, D — diffusion coeffi-
cient.

On the boundaries of calculation area we set no-flow and partial
slip conditions. Also, these conditions can be set inside ladle. We are
solving above equations numerically in cylindrical coordinates by finite
difference method in following steps:

1) The computation of the velocity field (without pressure field);

2) The calculation of the pressure field using the divergence of
velocity field;

3) The projection step corrects the velocity field using the pres-
sure field (satisfying the continuity equation);

4) The calculation of the powder concentration field using the
new velocity field.

The computation of these steps was done using the explicit
scheme in time. The condition for the ending of simulation is reaching
2% in coefficient of powder concentration variation.

So we have solved three problems. Each task is doing its compu-
tation simultaneously in time. The possibility of different time step val-
ues for them is taken into account. Fig. 3 shows the exchange of results
between tasks at each time layer.
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3D-motion of wire| — 1D-melting of
(Lagrange equa- wire (finite-

tions of 2 kind) |« p, x-{ volume method)

I
"

"

3D-transfer of
powder (convec-

— 51—

3D -motion of steel

melt (Navier- = u—»  ion_diffusion

Stokes equations) equation)

Fig. 3. The system of problems and relations between them:
v — rod velocity, k — coefficient of elasticity in connecting rods,
p — density of the rod, # — melt velocity field,
m — mass of powder that is released from the wire

The computer program “Primat” was created for the numerical
experiments. General flowchart of algorithm is shown in Fig. 4. Apart
shown in figure the user interface allows the calculation pausing, to
change the viewpoint or color of 3D-field. During the calculation the
program displays the current state of the model, namely shows cored
wire, sections of three-dimensional velocity field and powder, minimum
and maximum powder concentration in the ladle. So, getting all the in-
formation about the state of the model, it is convenient to check. For
example, hydrodynamics can be checked by the following indicator: the
powder mass in the melt should remain constant over time for a given
order of accuracy (starting calculation with predefined mass in melt).

Conclusions

Thus, problems of nonlinear dynamics of solids in Lagrange vari-
ables and nonlinear dynamics in continuum Euler variables are solved
numerically. Also the one-dimensional problem of cylinder melting with
crust appearing is solved. Usage of spherical coordinate system for cored
wire implicitly considers reaction of rod to rod connections, which guar-
antees the continuity of the rod's chain. Hydrodynamics model uses a
cylindrical coordinate system, which naturally matches the shape of the
ladle. Three-step scheme for velocity field computation was used to sat-
isfy the continuity equation.
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The mathematical model reproduces the industrial process start-

ing from cored wire injection under the level of the melt and finishing
by powder averaging during inert gas blowing. The computer program
allows to make experiments, to observe the model state. Computational
part of the program can be used on the high-performance computers.
The mathematical model is the basis for further improvement and incor-
poration of neglected phenomena.
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Fig. 4. General flowchart of the computer program “Primat”. Dash-

marked blocks is computational part of the program that calculates
mathematical model separately from the user interface
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